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Formal Methods

“Formal Methods refers to mathematically rigorous techniques
and tools for the specification, design and verification of software
and hardware systems”

http://shemesh.larc.nasa.gov/fm/fm-what.html
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A Motivating Example
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Under the hood – SPIRAL
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Scope and Status

Physical meaning - out of scope

HCOL formalization - done

HCOL correctness proofs - done

Σ-HCOL formalization - done

Σ-HCOL correctness proofs - work in progress

i-Code correctness proofs - future work

C and machine code correctness proofs - future work

“Specifications are harder to write than proofs in Coq. Coq will
always tell you if the proof is wrong.”

(Andrew Appel)
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Pointwise as iterative sum

A pointwise application of a function f 1 : R→ R to all elements of vector
a could be represented as an iterative sum:
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Which roughly corresponds to the following loop:

f o r ( i =0; i <4; i ++)
f 1 ( s r c+i , d s t+i ) ;

Which requires 4 iterations.
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Pointwise as a vectorized iterative sum

If we have a vectorized implementation of f 1 called f 2 : R2 → R2 the sum
will look like:
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Which roughly corresponds to the following loop:

f o r ( i =0; i <2; i ++)
f 2 ( s r c +2∗ i , d s t +2∗ i ) ;

Which now requires only 2 iterations.
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Index mapping functions

An index mapping function f has domain of natural numbers N in interval
[0,m) (denoted as Im) and the codomain of N in interval [0, n) (denoted
as In):

f m→n : Im → In

Such function, for example, could be used to establish relation between
indices of two vectors with respective sizes m and n.

0

1

2

3

4

m-1

0

1

2

3

4

n-1

f 4 =1
(

)

...
...

Vadim Zaliva, Franz Franchetti (CMU) High-Assurance SPIRAL #kievfprog, September 2017 8 / 37



Families of Index Mapping Functions

We define a family f of k index mapping functions:

∀j < k , fj
m→n : Im → In (1)

The family is called injective if it satisfies:

∀n, ∀m, ∀i , ∀j , fn(i) = fm(j) =⇒ (i = j) ∧ (n = m). (2)

The family is called surjective if it satisfies:

∀j , ∃n,∃i , fn(i) = j . (3)

The family is called bijective if it is both injective and surjective.
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Scatter operator

Scatter operator’s data flow:
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Given an injective index mapping function f n→N the Scatter operator
Sf : Rn → RN is defined as:

y = Sf (x) ⇐⇒ ∀i < n, yj =

{
xi ∃j < N, j = f (i),

θ otherwise.
(4)

Function f must be injective. That ensures that every output vector
element is assigned exactly once. Additionally, if f is bijective it is a
permutation. If f is a partial function some elements of input vector will
not be copied to the output.
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Gather operator

Gather operator’s data flow:
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Given an index mapping function f n→N the Gather operator
Gf : RN → Rn is defined as:

y = Gf (x) ⇐⇒ ∀i < n, yi = xf (i) (5)

If f is injective then every element of input vector will be sent to output
vector at most once. Otherwise, some output vector elements can be
repeated in the output vector. If f is bijective and consequently n = N,
then Gather is a permutation.

Vadim Zaliva, Franz Franchetti (CMU) High-Assurance SPIRAL #kievfprog, September 2017 11 / 37



Atomic Operator

f

OutputInput

x0 (x )0f

Any binary function f : R→ R could be lifted to become a standalone
operator using Atomic operator:

Af : R1 → R1 (6)

[x ] 7→ [f (x)]
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Pointwise Operator
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We define Pointwise operator on vectors of dimensionality n for a family of
functions fi as:

Pn
fi

: Rn → Rn (7)

(x0, x1, . . . , xn−1) 7→
(
f0(x0), f1(x1), . . . , fn−1(xn−1)

)
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Pointwise as iterative sum

A
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It could be shown that Pointwise operator could be expressed as a
summation:

Pn
fj

=
n−1∑
j=0

S(j)n
◦Afj ◦ G(j)n

(8)

Empty elements in sparse vectors are interpreted as zeros

By (j)n we denote constant function: In → I1 with the value j .

We will call the summand a Sparse Embedding
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Why Structural Correctness Matters

Dense vectors are decomposed into iterative sums of sparse vectors

Various decompositions (number or vectors and location of non-sparse
values) could represent a variety of memory access patterns.

This allows applying a variety of algebraic transformations to reshape
a computation to optimize for vectorization, parallelization, sequential
memory access.
However in such iterative sum, the addition has a special semantics:

Mathematically, the sparse values could be treated as zeroes.
Operationally, combining sparse and non-sparse values could be seen as
an assignment.

The expressions produced are naturally mapped to SSA form only if
certain constraints on structure of sparse vectors under iterative sums
are maintained.

Tracking and enforcing such constraints for correctness proofs is
difficult, as they are not adequately enforced by mathematica
abstraction used.
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Sparsity Requirements

In general, the vectors we are dealing with are sparse. For example Scatter
produces a vector with missing values. To prove Σ-HCOL language
properties we need our sparse vector formalization to meet the following
requirements:

distinguish empty and assigned cells

treat empty cells as some “default” value

such default value could depend on the context (e.g. 0 for addition
but 1 for multiplication)

in case of SparseEmbedding we should never attempt to combine two
non-sparse elements. This type of error we will call a collision

we would like to separate as much as possible sparsity tracking from
actual operations on values as they represent two different aspects of
computation
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Sparsity Approach

An overview of our sparse vector handing approach:

Implemented in Coq Proof Assistant

Each value is tagged with two boolean flags: is struct and is collision

Flags’ structure along with combining operator forms a Monoid.

Two monoid instances are used: with and without collision tracking

Falags are tracked using Writer Monad

Operations on values could not examine directly sparsity flags and
thus could not depend on them

Sparsity is automatically tracked by the monad. No implicit flags
handling in operators’ implementation

Collisions are automatically detected and propagated by the monad
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Monoid (Abstract algebra refresher)

A Monoid (A,⊕, 0) is an algebraic structure which consists of:

A Set A
A binary operation ⊕ : A → A→ A (AKA mappend).

A special set element 0 ∈ A (AKA mzero)

Which satisfy the following Monoid laws:

left identity: ∀a ∈ A, 0⊕ a = a

right identity: ∀a ∈ A, a⊕ 0 = a

associativity: ∀a, b, c ∈ A, (a⊕ b)⊕ c = a⊕ (b ⊕ c)
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Flags Monoid

Record Rflags : Type := mkRflags {is_struct: B; is_collision: B}.

Definition mzero := mkRthetaFlags > ⊥.
Definition mappend (a b: Rflags) : Rflags :=

mkRthetaFlags

(is_struct a && is_struct b)
(is_collision a || is_collision b ||

(negb (is_struct a || is_struct b))).
Definition Monoid_Rflags : Monoid Rflags := Build_Monoid mappend mzero.

The initial flags’ value has structural flag True and collision flag False.
The mappend operation combines the two sets of flags as follows. If one
of operands is non-structural, the result is also non-structural. The
collision flags are ”sticky”. Combining two non-structural elements, causes
a collision. It could be proven that monoid laws are satisfied.
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What is a Monad?
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Monad intuition

See “Monad Tutorial Fallacy” http://bit.ly/monads-are-burritos

“Monads apply a function that returns a wrapped value to a wrapped
value.” 2

2
Image credit: http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
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Monad in Coq

A simplified3 definition of Monad class from Coq ExtLib:

Class Monad (m : Type → Type) : Type := {
ret : ∀ {t : Type}, t → m t ;
bind : ∀ {t u : Type}, m t → (t → m u) → m u

}.

m is called a type constructor

ret “wraps” a value into a monad

bind takes a wrapped value, a function which returns a wrapped
value and returns a wrapped value

3Removed universe polymorphism
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WriterMonad

One can think about WriterMonad as a product type t × s containing
a value of type t and a state of type s. The state must be a Monoid.

Monadic ret function constructs the new WriterMonad value by
combining provided value with mzero state.

Monadic bind operator allows to combine monadic values using
user-provided functoin, and takes care of state tracking combining
states via mappend.

In additon to ret and bind the following writer-specific functions are
defined:

writer: ∀ s : Type, Monoid s → Type → Type

tell: ∀ (s: Type) (w: Monoid s), s → writer w ()
runWriter: ∀ (s t : Type) (w: Monoid s), writer w t → t×s
execWriter: ∀ (s t : Type) (w : Monoid s), writer w t → s

evalWriter: ∀ (s t : Type) (w : Monoid s), writer w t → t
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Combining Rflags and WriterMonad

To track the flags while performing operations on R values we will use
Writer Monad, parametrized by a Monoid which defines how flags will be
handled:

Definition Rθ := writer Monoid_Rflags R.

To construct values of the type Rθ we define two convenience functions:

Definition mkStruct (v: R) : Rθ := ret v.
Definition mkValue (v: R) : Rθ := tell (mkRflags ⊥ ⊥) ;; ret v.

Any unary or binary operation could be “lifted” to operate on monadic
values using liftM or liftM2 respectively:

liftM: ∀ (m: Type → Type) {Monad m} (T U: Type),
(T → U) → (m T → m U)

liftM2: ∀ (m: Type → Type) {Monad m} (T U V: Type),
(T → U → V) → (m T → m U → m V)
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Sparse Operator Example

Now we can define an operator:

Definition Pointwise (n: N) (f: R → R) (v: vector Rθ n): (vector Rθ n)
:= vector.map (liftM f) v.

Key points:

actual operation performing computations (f ) is defined on R
all structural flags tracking is transparent

a raw vector x could be passed as an argument by lifting it via
(vector.map ret x)

a vector of raw values could be extracted from the result x by simply
applying (vector.map evalWriter x).

Correctness condition on the resulting vector x could checked using:

Definition vecNoCollision {n: N} (v: vector Rθ n) : Prop
:= vector.Forall (not ◦ is_collision ◦ execWriter) v
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Iterative Operators – from dense to sparse

We have shown earlier that Pointwise operator on Rn could be expressed
as a summation:

Pn
fj
x =

n−1∑
j=0

(
S(j)n

◦Afj ◦ G(j)n
x
)

This formulation was using dense vectors, without collision tracking.
Now we would like to extend it to sparse vectors with collision
tracking.

It was using summation to combine elements. We would like to
generalize it to other operations such as multiplication.

We would like to generalize this notation to iterative operators using
pointfree notation.
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Operator Families

Similarly to as how we defined a family of index functions earlier we define
a family F of k operators:

∀j < k , Fj : Bm → Dn (9)

All operators in the family have the same type.

Instead of R we use abstract types B and D.

In subsequent slides we will use uppercase calligraphic letters to
denote abstract types.
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Scalar, Vector, and Operator Diamond

From arbitrary binary operation � : A → A→ A we can induce binary
pointwise vector diamond operation:

~� : An → An → An

((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1)) 7→
(a0 � b0, a1 � b1, . . . , an−1 � bn−1)

(10)

Next, we can define operator diamond :

�̊ : (An → Am)→ (An → Am)→ (An → Am)

(F ,G ) 7→ (x 7→ F (x)~� G (x))
(11)
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Iterative Diamond

Operator diamond in turn induces an iterative diamond operation for a
family of n operators F : An → An:

n−1�
i=0

Fi = F1 �̊ F2 �̊ · · · �̊ Fn

Or more formally, the recursive definition:

n−1�
i=0

Fi : An → An

x 7→

0n if n = 0,(
Fn−1 �̊

(
n−2�
j=0

Fj

))
(x) otherwise.

(12)

An additional requirement here is that the Set A forms a Monoid with
identity element 0 of type A and binary associative operation
� : A → A → A. The notation 0n denotes constant vector of identity
elements of length n.
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Iterative Sum with sparsity and collision tracking

Let us apply the diamond abstraction demonstrated in previous slides to
Rθ type (which represents R values with Rflags state) and summation
operator. To do so we specalize previous notation as follows:

Definition A := Rθ.
Definition � := liftM2 (+).
Definition ~� := vector.map2 �. (* generic *)

Definition �̊ f g := λ x ⇒ (f x) ~� (g x). (* generic *)

Definition 0n := vector.const (ret 0) n.

This gives us a sparse, collision-tracking Pointwise:

Pointwisen,f =
n−1�
j=0

(
S(j)n

◦Afj ◦ G(j)n

)
(13)
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Verifying SPIRAL

1 SPIRAL performs a series of program transformations in HCOL and
Σ-COL languages. These transformations needs to be
semantic-preserving.

2 The final Σ-HCOL expression must have certain structural properties

3 Sigma-HCOL to i-Code translation needs to preserve semantics.

4 i-Code is then compiled to LLVM or C and this compilation must
preserve semantics.

5 The final compilation of LLVM or C will be performed by a verified
compiler such as CompCert or VELLVM

Vadim Zaliva, Franz Franchetti (CMU) High-Assurance SPIRAL #kievfprog, September 2017 31 / 37



Proving Rewriting Rules

“Translation Validation” vs full compiler verification approach.

Each Σ-HCOL rewriting rule is a lemma.
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Proving Rewriting Rules – Value Correctness

Abstracting R as a carrier data type

Using Setoid equality relation defined on carrier type

Comparison unwraps the WriterMonad and compare just values,
ignoring state (flags)

Operators are functions on vectors

Per-rule lemmas stating Extensional Setoid Equality of (compound)
operators.

Mixed embedding: Record containing operator function as well as
additional properties such as Setoid Morphism ( Proper instance)

Value correctness reasoning in transitional.
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Proving Rewriting Rules – Structural Properties

Structural properties deal with sparsity flags and collision errors only.
(They only examine the state of the Writer Monad).

Operator record is extended to include finite sets of indices of
non-sparse value of input and output vectors.

The properties itselfs are expressed as a typeclass all operators must
be instances of. The properties are:

1 Both in index set and out index set memberships are decideabe
2 Only input elements with indices in in index set affect output
3 Sufficiently (values in right places, no info on empty spaces) filled input

vector guarantees properly (values are only where values expected)
filled output vector

4 Sever generate values at sparse positions of output vector
5 As long there are no collisions in expected non-sparse places, none is

expected in nonsparce places on output
6 Never generate collisions on sparse places

Structural correctness reasoning in compositional!
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Summary

What have been formalized so far in Coq:

1 Index functions and their families

2 Σ-HCOL operators and their families

3 Sparse vectors

4 Operator equality

5 Operator structural properties

6 Generalized notion of iterative operators

Next steps:

Σ-HCOL rewriting proof automation using.

Formalzing i-Code (operational semantics)

Linking HCOL semantics to i-Code semantics

Linking i-Code semantics to C or LLVM semantics
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Questions?

email vzaliva@cmu.edu
twitter @vzaliva

web http://www.crocodile.org/
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