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Introduction

Vadim Zaliva, Franz Franchetti (CMU) HELIX: A Case Study of a Formal Verification of High Performance Program GenerationFHPC’18 3 / 71



Spiral and HELIX

SPIRAL is a program generation system which can generate
high-performance implementation for a variety of linear algebra
algorithms, such as discrete Fourier transform, discrete cosine
transform, convolutions, and the discrete wavelet transform,
optimizing for such features of target architecture as multiple cores,
single-instruction multiple-data (SIMD) vector instruction sets, and
deep memory hierarchies.
It is developed by interdisciplinary team from CMU, ETH Zurich,
Drexel, UIUC, and industry collaborators.

HELIX is a CMU research project to bring the rigor of formal
verification to SPIRAL.
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Real-life Use-Case (Cyber-physical System)

SPIRAL ЫHELIX

TRACE

1. rule OLCompose_Assoc
2. rule PointWise_ISumUnion
3. rule
Reduction_ISumReduction
4. rule ISumXXX_YYY
5. rule OLCompose_Assoc

_ScatHUnion
LLVM IR

store float* %Y, float** %193, align 8
store float* %X, float** %194, align 8
%1 = load float*, float** %194, align 8
%2 = bitcast float* %1 to <4 x float>*
store <4 x float>* %2, <4 x float>**
%a45, align 8
%3 = load <4 x float>*

ProofsCode

C Program

C Compiler

Proofs (VELLVM)

Code (LLVM)

HA Robot

Model Safety
constraint

Code
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Motivating Example
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Motivating Example

Chebyshev distance

As an example, we consider the Chebyshev distance, which is a metric
defined on a vector space, induced by the infinity norm:

d∞ : Rn × Rn → R with

d∞(~a, ~b) = ||~a− ~b||∞

Infinity norm

The infinity norm is a vector norm of a vector defined as:

|| · ||∞ : Rn → R with

||~x ||∞ = max
i
|~xi |
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Chebyshev Distance in HCOL

HCOL operators are unary functions on real-valued finite-dimensional
vectors. The scalar values are represented as single element vectors
(R ∼= R1), and tuples of vectors are flattened (Rm × Rn ∼= Rm+n).

The Chebyshev distance and the infinity norm HCOL operators have the
following types:

ChebyshevDist : R2n → R1

InfinityNorm : Rn → R1
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Some basic HCOL operators

Three more HCOL operators correspond to common functional
programming primitives: fold, map, and zipWith:

Reducef ,z : Rn → R1

Mapf : Rn → Rn

Binopf : R2n → Rn

HCOL operators can be combined using functional composition, for which
we will use infix notation: A ◦ B.
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Chebyshev distance breakdown in HCOL

We can write an HCOL expression for the Chebyshev distance as a
composition of an InfinityNorm operator and an element-wise vector
subtraction, expressed as Binop parameterized by a binary subtraction
function (sub : R→ R→ R):

ChebyshevDist = InfinityNorm ◦ Binopsub

In turn, an infinity norm can be broken down further into simpler operators
resulting in the final HCOL expression for Chebyshev distance:

ChebyshevDist = Reducemax,0 ◦ Mapabs ◦ Binopsub
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From HCOL to Σ-HCOL

Most vector and matrix operations can be expressed as iterative
computations on their elements. To generate efficient machine code for
such computations, we transform our expressions into a form where these
iterations will become explicit. For that, we extend the HCOL language in
the following ways:

1 Iterative operators

2 Sparse vector data type

We will call such language Σ-HCOL.

In the next slides we will show simple example to demonstrate how sparsity
and iterative operators interact.
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Map as iterative sum

HCOL operator Map performs pointwise application of a function
f : R→ R to all elements of vector a. It could be represented as an
iterative sum:

+ + +Mapf

f(a )0

0

0

0

a0

3a

2a

1a
= =

0

0

0

f(a )1

0

0

0

f(a )3

0

0

0

f(a )2

f(a )0

f(a )1

f(a )3

f(a )2

Which roughly corresponds to the following loop:

f o r ( i =0; i <4; i ++)
f ( s r c+i , d s t+i ) ;

Which requires 4 iterations.
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Pointwise as a vectorized iterative sum

If we have a vectorized implementation of f with type f : R2 → R2 the
sum will look like:

+
0

0

0

0

a0

3a

2a

1a
= =

f(a )1

f(a )3

f(a )2

f(a )0 f(a )0

f(a )1

f(a )3

f(a )2

Mapf

Which roughly corresponds to the following loop:

f o r ( i =0; i <2; i ++)
f ( s r c +2∗ i , d s t +2∗ i ) ;

Which now requires only 2 iterations.
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Lifting scalar functions

We use notation J·K for the HCOL atomic operator, which lifts real-valued
scalar functions to HCOL operators.

Input Output

f(x )0
x0

f

When lifting functions of multiple arguments, they are uncurried and their
arguments are flattened into a vector. Thus, f : R→ R is directly lifted to
Jf K : R1 → R1, but g : R→ R→ R becomes JgK : R2 → R1.
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Embedding and picking

The Embed operator takes an element from a single-element vector and
puts it at a specific index in a sparse vector of given length. The Pick

operator does the opposite: it selects an element from the input vector at
the given index and returns it as a single element vector:

Embedn,i : R1 → Rn

Picki : Rn → R1

x
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Input
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Index mapping functions

An index mapping function f has domain of natural numbers N in interval
[0,m) (denoted as Im) and the codomain of N in interval [0, n) (denoted
as In):

f m→n : Im → In

Such function could be used to establish relation between indices of two
vectors with respective sizes m and n.
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Families of Index Mapping Functions

Function families

We define a family f of k index mapping functions as:

∀j < k , fj
m→n : Im → In

–jections

The family is called injective if it satisfies:

∀n, ∀m, ∀i , ∀j , fn(i) = fm(j) =⇒ (i = j) ∧ (n = m).

The family is called surjective if it satisfies:

∀j , ∃n,∃i , fn(i) = j .

The family is called bijective if it is both injective and surjective.
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Generalizing Embed as Scatter operator

Given an injective index mapping function f n→m the scatter operator
Scatf : Rn → Rm is defined as:

y = Scatf (x) ⇐⇒ ∀i < n, yj =

{
xi ∃j < N, j = f (i),

θ otherwise.
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Function f must be injective. That ensures that every output vector
element is assigned exactly once. Additionally, if f is bijective it is a
permutation.

Vadim Zaliva, Franz Franchetti (CMU) HELIX: A Case Study of a Formal Verification of High Performance Program GenerationFHPC’18 19 / 71



Generalizing Pick as Gather operator

Given an index mapping function f m→n the gather operator
Gathf : Rn → Rm is defined as:

y = Gathf (x) ⇐⇒ ∀i < n, yi = xf (i)
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If f is injective then every element of input vector will be sent to output
vector at most once. Otherwise, some output vector elements can be
repeated in the output vector.
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Sparse Embedding

One class of HCOL expressions that we are particularly interested in has
the following form:

Scatf ◦ K ◦ Gathg
This form is called a sparse embedding of an operator K (the kernel) and
represents a step in iterative processing of a vector’s elements. It
corresponds to the body of a loop in which the gather picks the input
vector’s elements, which are then processed by K , and the results are then
dispatched to appropriate positions in the output vector using the scatter.
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Map-Reduce

The higher-order map-reduce operator MRk,f ,z takes an indexed family of
operators (a function which for each given index value returns an operator,
typically a sparse embedding) and produces a new operator. It has the
following type:

MRk,f ,z : (N→ (Rn → Rm))→ Rn → Rm

When evaluated, a map-reduce applies all family members with indices
between 0 and k − 1 (inclusive) to an input vector, and the resulting k
vectors are folded element-wise using a binary function (f : R→ R→ R)
and the initial value (z : R).
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Map-Reduce of Sparse Embedding

A simple example applies a function f to all elements of a vector of size 2:

MR2,+,0(λi .(Scatλx .i ◦ Jf K ◦ Gathλx .i ))

We use a family of sparse embeddings of Jf K as a body of the map-reduce.
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Chebyshev Σ-HCOL breakdown

Our HCOL expression for Chebyshev Distance can be transformed via a
series of rewriting steps into a Σ-HCOL form which exposes implicit
iterations and is more suitable for compilation.

Reducemax,0 ◦ Mapabs ◦ Binopsub

= Reducemax,0◦Mapabs◦MRn,+,0(λi .(Scatλx .i ◦ Binopsub ◦ Gathλx .xn+i ))

= Reducemax,0◦MRn,+,0(λi .(Mapabs ◦ Scatλx .i ◦ Binopsub ◦ Gathλx .xn+i ))

= MRn,max,0(λi .(Reducemax,0 ◦ Mapabs ◦ Scatλx .i ◦ Binopsub ◦ Gathλx .xn+i ))

= MRn,max,0(λi .(Reducemax,0 ◦ Scatλx .i ◦ Mapabs ◦ Binopsub ◦ Gathλx .xn+i ))

= MRn,max,0(λi .(Mapabs ◦ Binopsub ◦ Gathλx .xn+i ))

= MRn,max,0(λi .(Binopλ ab . |a−b| ◦ Gathλx .xn+i ))

= MRn,max,0(λi .(Binopλ ab . |a−b| ◦ (MR2,+,0(λj .(Embed2,j ◦ Picki+jn)))))
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Breakdown Step 3

Reducemax,0◦MRn,+,0(λi .(Mapabs ◦ Scatλx .i ◦ Binopsub ◦ Gathλx .xn+i )) =

MRn,max,0(λi .(Reducemax,0 ◦ Mapabs ◦ Scatλx .i ◦ Binopsub ◦ Gathλx .xn+i ))

The corresponding Coq rewrite lemma

1 Theorem rewrite_Reduction_IReduction
2 {i o n: N}
3 (op_family: @SHOperatorFamily Monoid_RthetaFlags i o n)
4 ‘{uf_zero: MonUnit CarrierA} (* Common unit for both monoids *)
5 ‘{f: SgOp CarrierA} (* 1st Monoid used in reduction *)
6 ‘{P: SgPred CarrierA} (* the restriction *)
7 ‘{f_mon: CommutativeRMonoid f uf_zero P} (* 2nd Monoid used in IUnion *)
8 ‘{u: SgOp CarrierA}
9 ‘{u_mon: CommutativeMonoid u uf_zero}

10 (Uz: Apply_Family_Single_NonUnit_Per_Row _ op_family uf_zero)
11 (Upoz: Apply_Family_Vforall_P _ (liftRthetaP P) op_family) :
12 (liftM_HOperator Monoid_RthetaFlags (@HReduction _ f uf_zero))
13 ◦ (@IUnion i o n u _ uf_zero op_family) =
14 SafeCast (IReduction f uf_zero
15 (UnSafeFamilyCast (SHOperatorFamilyCompose _
16 (liftM_HOperator Monoid_RthetaFlags
17 (@HReduction _ f uf_zero)) op_family))).
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Step 3 – LHS

Let us consider left-hand side of the expression being rewritten:

Reducemax,0 ◦ MRn,+,0(λi .(F i)) = MRn,max,0(λi .(Reducemax,0 ◦ (F i)))

Reduce (a , a , a , ... a ) = max a (max,0 0 1 2 m 1 max a (...(max a 0)...)2 m

Reduce stageMap stage

F0

...

... ... ... ...

F1 F2 Fm

(plus...(plus 0 0)...0) 0) a ) =0

(plus...(plus 0 0)...0) 0) a ) =1

(plus...(plus 0 0)...0) ) 0) =2a

(plus...(plus 0 )...0) 0) 0) =ma
ma

2a

......

Reduce operator
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Step 3 – RHS

Let us consider right-hand side of the expression being rewritten:

Reducemax,0 ◦ MRn,+,0(λi .(F i)) = MRn,max,0(λi .(Reducemax,0 ◦ (F i)))

...

... ... ... ...

V )fold_right (max a a , a , 0, ... a ) = max (max,0 0 1 2 m max a (max ... (max a 0)...)0 ma a max1 2 ( 0

Reduce (F i)max,0F i

Reduce stage

Map stage

max a (0 max a (max 0 ... (max 0 0) ...) =1

...

max 0 (max 0 (max a ... (max 0 0) ...) =2

max 0 (max 0 (max 0 ... (max 0 0) ...)  =

max 0 (max 0 (max 0 ... (max a 0) ...) =m ma

0

...

2a

0max a a1
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Step 3 – LHS RHS equality

The actual rewrite:

Reducemax,0 ◦ MRn,+,0(λi .(F i)) = MRn,max,0(λi .(Reducemax,0 ◦ (F i)))

In our example could be reduced to equality:

max a0 (max a1 (max a2 ( . . . (max am 0) . . . ) =
max (max a0 a1) (max a2 (max 0 . . . (max am 0) . . . ).

Which is correct as long as all ai values are non-negative and max is
commutative and associative.
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Step 3 – observations

The actual rewrite:

Reducemax,0 ◦ MRn,+,0(λi .(F i)) = MRn,max,0(λi .(Reducemax,0 ◦ (F i)))

Fold direction

Reduce is defined as a right fold, while the reduce step of MR is defined as
a left fold:

Vfold_right f [a1 . . . an] b = f a1 (f a2 . . . (f an b) . . . ).
Vfold_left_rev f a [b1 . . . bn] = f . . . (f (f a bn) bn−1) . . . b1.

The rule will work only if (T ,max, 0) is a commutative monoid. It is not
true for T = R but it is true for T = R+.

Sparsity

In the matrix produced by sequentially evaluating F i for i = 0 . . . n − 1,
each row has at most one non-zero element. For example, this is true if F
is a Scat parametrized by injective familiy of index functions.
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Step 3 – generalization

Generalized rewrite rule:

Reducef,z ◦ MRn,g ,z(λi .(F i)) = MRn,f,z(λi .(Reducef,z ◦ (F i)))

Additional constraints:

1 In the matrix produced by sequentially evaluating F i for
i = 0 . . . n − 1, each row has at most one element not equal z .

2 In vectors produced evaluating F i for any i all elements satisfy some
predicate P.

3 (T , u, z) forms a commutative monoid.
4 (T , f , z ,P) forms a restricted commutative monoid:

f is closed under P.
(T , u, z) is a commutative monoid for all T values which satisfy P.
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Chebyshev Σ-HCOL code generation

The resulting expression presents Chebyshev distance in terms of two
nested iterative computations and some simple arithmetic operations:

MRn,max,0(λi .(Binopλ ab . |a−b| ◦ (MR2,+,0(λj .(Embed2,j ◦ Picki+jn)))))

Each iterative map-reduce naturally translates to a loop, which allows
compilation of this expression into an imperative program and subsequently
into efficient machine code. For example, SPIRAL compiles the expression
for n = 3 with optimizations turned off into the C code shown below:

void chebyshev ( float ∗y, float ∗x) {
float s,t[2];
y[0] = 0.0f;
for(int i = 0; i <= 2; i++) { /∗ MRn,max,0 ∗/

for(int j = 0; j <= 1; j++) /∗ MR2,+,0 ∗/
t[j] = x[i + 3∗j];

s = abs(t[0] − t[1]); /∗ λ ab . |a− b| ∗/
y[0] = max(s, y[0]);

}
}
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HELIX
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From SPIRAL to HELIX

Mathematical
Formula

3rd partyFuture work

h-Code

This paper

C Program

SPIRAL

HELIX

Machine Code

HCOL Σ-HCOL LLVM IRD HCOL-

i-CodeΣ-OLOL

HCOL formalization

HCOL rewriting correctness proofs

Σ-HCOL formalization

Σ-HCOL rewriting correctness proofs

D-HCOL formalization

Σ-HCOL to D-HCOL compiler correctness proofs

Σ-HCOL to h-Code verified compiler - future work

h-Code to LLVM IR verified compiler - future work

Vadim Zaliva, Franz Franchetti (CMU) HELIX: A Case Study of a Formal Verification of High Performance Program GenerationFHPC’18 39 / 71



HELIX languages summary

HELIX languages are embedded in Coq Proof assistant. The program is
sequentially transformed from one language to another, and proof of all
transformation stages guarantees semantic preservation.

Σ-HCOLHCOL D HCOL- h-Code

Abstraction Embedding Data semantics Proofs

HCOL declarartive shallow dense vectors equational yes
Σ-HCOL functional shallow sparse vectors equational yes
D-HCOL functional deep dense vectors equational no (stripped)
h-Code imperative deep memory arrays operational no
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Sparsity
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Why Sparsity Matters

Dense vectors are decomposed into iterative sums of sparse vectors.
Multiple decompositions are possible. This allows applying a variety of
algebraic transformations to reshape a computation to optimize for
vectorization, parallelization, sequential memory access.
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Sparsity Constraints
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In such iterative sum, the addition has a special semantics:

Mathematically, the sparse values could be treated as zeroes.
Operationally, adding sparse and non-sparse values is an assignment.

Certain constraints on structure of sparse vectors under iterative sums
must be maintained.

Tracking and enforcing such constraints in correctness proofs is
difficult, as they are not adequately enforced by mathematical
abstraction used.
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Sparsity Requirements

We want our sparse vector formalization to meet the following
requirements:

Distinguish sparse and assigned cells

Treat sparse cells as some “structural” value

The “structural” value is not a constant (e.g. we may use 0 for
addition but 1 for multiplication)

In sparse embedding we should never combine two non-sparse
elements. Such situation, if arise, we will call a collision

Separate sparsity tracking from actual operations on values as they
represent two different aspects of computation
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Our Sparsity Approach

An overview of our sparse vector handing approach:

Each value is tagged with two boolean flags: is struct and is collision

The flags along with combining operator forms a Monoid.

Depending on context one of the two monoid instances is used: with
and without collision tracking

Flags are tracked using Writer Monad

Operations on values could not examine directly sparsity flags and
thus could not depend on them

Sparsity is automatically tracked by the monad. No implicit flags
handling in operators’ implementation

Collisions are automatically detected and propagated by the monad
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Monoid (Abstract algebra refresher)

Monoid

A Monoid (A,⊕, 0) is an algebraic structure which consists of:

A Set A
A binary operation ⊕ : A → A→ A (AKA mappend).

A special set element 0 ∈ A (AKA mzero)

Monoid laws

A Monoid must satisfy the following Monoid laws:

left identity: ∀a ∈ A, 0⊕ a = a

right identity: ∀a ∈ A, a⊕ 0 = a

associativity: ∀a, b, c ∈ A, (a⊕ b)⊕ c = a⊕ (b ⊕ c)
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Flags Monoid

Record Rflags : Type := mkRflags {is_struct: B; is_collision: B}.

Definition mzero := mkRthetaFlags > ⊥.
Definition mappend (a b : Rflags) : Rflags :=

mkRthetaFlags

(is_struct a && is_struct b)
(is_collision a || is_collision b ||

(negb (is_struct a || is_struct b ))).
Definition Monoid_Rflags : Monoid Rflags := Build_Monoid mappend mzero.

The initial flags’ value has structural flag True and collision flag False.
The mappend operation combines the two sets of flags as follows. If one
of operands is non-structural, the result is also non-structural. The
collision flags are ”sticky”. Combining two non-structural elements, causes
a collision. It could be proven that monoid laws are satisfied.
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Monad in Coq

A simplified definition of Monad class from Coq ExtLib library:

Class Monad (m : Type → Type) : Type := {
ret : ∀ {t : Type}, t → m t ;
bind : ∀ {t u : Type}, m t → (t → m u) → m u

}.

m is a type constructor that defines, for every underlying type,
how to obtain a corresponding monadic type.

ret is a unit function that injects a value in an underlying type
to a value in the corresponding monadic type.

bind is a binding operation used to link the operations in the
pipeline.
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WriterMonad

One can think about WriterMonad as a product type t × s containing
a value of type t and a state of type s. The state must be a Monoid.

Monadic ret function constructs the new WriterMonad value by
combining provided value with mzero state.

Monadic bind operator allows to combine monadic values using
user-provided functoin, and takes care of state tracking by combining
states via mappend.

In additon to ret and bind the following writer-specific functions are
defined:

writer: ∀ s : Type, Monoid s → Type → Type

tell: ∀ (s : Type) (w : Monoid s ), s → writer w ()
runWriter: ∀ (s t : Type) (w : Monoid s ), writer w t → t×s
execWriter: ∀ (s t : Type) (w : Monoid s ), writer w t → s

evalWriter: ∀ (s t : Type) (w : Monoid s ), writer w t → t
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Combining Rflags and WriterMonad

To track the flags while performing operations on R values we will use
writer monad, parametrized by a monoid which defines how flags will be
handled:

Definition Rθ := writer Monoid_Rflags R.

To construct values of the type Rθ we define two convenience functions:

Definition mkStruct (v :R) : Rθ := ret v.
Definition mkValue (v :R) : Rθ := tell (mkRflags ⊥ ⊥) ;; ret v.

Any unary or binary operation could be “lifted” to operate on monadic
values using liftM or liftM2 respectively:

liftM: (R → R) → (Rθ → Rθ)
liftM2: (R → R → R) → (Rθ → Rθ → Rθ)
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Sparse Operator Example

Now we can define a Map operator:

Definition Map (n : N) (f: R → R) (v: vector Rθ n): (vector Rθ n)
:= vector.map (liftM f) v .

Key points:

actual operation performing computations (f ) is defined on R
all structural flags tracking is transparent

a raw vector x could be passed as an argument by lifting it via
(vector.map mkValue x)

a vector of raw values could be extracted from the result x by simply
applying (vector.map evalWriter x).

The resulting vector x could be checked for collisions using:

Definition vecNoCollision {n: N} (v: vector Rθ n) : Prop
:= vector.Forall (not ◦ is_collision ◦ execWriter) v
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Iterative Operators
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Iterative Operators – from dense to sparse

We have shown earlier that Map could be expressed as a summation:

∀x ∈ Rn, Mapf x = MRn,+,0(λi .(Scatλx .i ◦ Jf K ◦ Gathλx .i )) x

This formulation is using dense vectors, without collision tracking.
Now we would like to extend it to sparse vectors with collision
tracking.

It is using summation to combine elements. We would like to
generalize it to other operations such as multiplication.
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Scalar, Vector, and Operator Diamond

From arbitrary binary operation � : A → A→ A we can induce binary
pointwise vector diamond operation:

~� : An → An → An

((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1)) 7→
(a0 � b0, a1 � b1, . . . , an−1 � bn−1)

(2)

Next, we can define operator diamond :

�̊ : (An → Am)→ (An → Am)→ (An → Am)

(F ,G ) 7→ (x 7→ F (x)~� G (x))
(3)
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Iterative Diamond

Operator diamond in turn induces an iterative diamond operation for a
family of n operators F : An → An:

n−1�
i=0

Fi = F1 �̊ F2 �̊ · · · �̊ Fn

Or more formally, the recursive definition:

n−1�
i=0

Fi : An → An

x 7→

0n if n = 0,(
Fn−1 �̊

(
n−2�
j=0

Fj

))
(x) otherwise.

(4)

An additional requirement here is that the Set A forms a Monoid with
identity element 0 of type A and binary associative operation
� : A → A → A. The notation 0n denotes constant vector of identity
elements of length n.
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Iterative Sum with sparsity and collision tracking

Let us apply the diamond abstraction demonstrated in previous slides to
Rθ type (which represents R values with Rflags state) and summation
operator. To do so we specalize previous notation as follows:

Definition A := Rθ.
Definition � := liftM2 (+).
Definition 0n := vector.const (ret 0) n.

This gives us a sparse, collision-tracking Map:

Mapf =
n−1�
j=0

(Scatλx .i ◦ Jf K ◦ Gathλx .i )
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Verification
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HELIX Verification Tasks

1 HELIX performs a series of program transformations (rewrites) in
HCOL and Σ-HCOL languages. These transformations needs to be
semantic-preserving.

2 The final Σ-HCOL expression must have certain structural properties.

3 Translation of Σ-HCOL to D-HCOL must preserve semantics.

4 Compilation of Σ-HCOL to h-Code must preserve semantics.

5 Compilation of h-Code to LLVM IR must preserve semantics.

6 The correctness of the final compilation of LLVM IR to machine code
will be guaranteed by a verified compiler such as VELLVM.
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Rewriting Rules Translation Validation

Lemma N
h =hN

SPIRAL

HCOL

h h

HCOL

Rule NRule 2Rule 1 ...

...

Trace

Coq

Lemma 1
h=h0

Lemma 2
h =h0 1

Proof: h=h

“Translation Validation” vs full compiler verification approach.

Each Σ-HCOL rewriting rule is a lemma.
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Proving Rewriting Rules – Value Correctness

Abstracting R as a carrier type

Using Setoid equality relation defined on a carrier type wrapped in
WriterMonad.

The equality unwraps the WriterMonad and compare just values,
ignoring the state (flags)

Per-rule lemmas stating Extensional Setoid Equality of (compound)
operators.

Mixed embedding: Record containing operator function as well as
additional properties such as Setoid Morphism (Proper instance)

Value correctness reasoning in transitional.
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Structural Properties

Structural properties deal with sparsity flags and collision errors only.
(They only examine the state of the Writer Monad).

Operator record is extended to include finite sets of indices of
non-sparse values of input and output vectors.

The properties are expressed as a typeclass with following fields:
1 Both in index set and out index set memberships are decideabe
2 Only input elements with indices in in index set affect output
3 Sufficiently (values in right places, no info on empty spaces) filled input

vector guarantees properly (values are only where values expected)
filled output vector

4 Never generate values at sparse positions of output vector
5 As long there are no collisions in expected non-sparse places, none is

expected in nonsparce places on output
6 Never generate collisions on sparse places

Structural correctness reasoning in compositional.
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Structural Properties typeclass

Class SHOperator_Facts {i o:N} (f: @SHOperator i o) := {

in dec: FinNatSet_dec (in_indset f);

out dec: FinNatSet_dec (out_indset f);

in as domain: ∀ x y,

vec_equiv_at_set x y (in_indset f) → op f x = op f y;

out as range: ∀ v,
(∀ j (jc:j<i), in_indset f (mkFinNat jc) → Is_Val (Vnth v jc)) →
(∀ j (jc:j<o), out_indset f (mkFinNat jc) → Is_Val (Vnth (op f v) jc));

no vals at sparse: ∀ v,
(∀ j (jc:j<o), ¬ out_indset f (mkFinNat jc) → Is_Struct (Vnth (op f v) jc));

no coll range: ∀ v,
(∀ j (jc:j<i), in_indset f (mkFinNat jc) → Not_Collision (Vnth v jc)) →
(∀ j (jc:j<o), out_indset f (mkFinNat jc) →

Not_Collision (Vnth (op f v) jc));

no coll at sparse: ∀ v,
(∀ j (jc:j<o), ¬ out_indset f (mkFinNat jc) →

Not_Collision (Vnth (op f v) jc));

}.
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D-HCOL language

After applying HELIX rewriting rules, Σ-HCOL expressions are compiled to
lower-level language, called D-HCOL. This language differs from Σ-HCOL
in a number of ways:

There is one-to-one correspondance between Σ-HCOL and D-HCOL
operators.

D-HCOL contains a limited subset of operators compared to Σ-HCOL.

D-HCOL is deep embedded in Coq, unlike Σ-HCOL which is shallow
embedded.

No sparsity tracking.

No proofs as part of definitions.

Using de Bruijn indices for variables.

Evaluation function is defined which takes D-HCOL expression and
environment Γ and evaluates it in this environment.

A limited fixed set of intirinsic functions (e.g. +,−,max) is defined.
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From Σ-HCOL to D-HCOL

Compiler pass from Σ-HCOL to D-HCOL is implemented using
Template-Coq

Template program reifySHCOL takes an Σ-HCOL expression and
produces two artefacts (or an error):

1 A corresponding D-HCOL expression.
2 A theorem, stating semantic equivalence of produced D-HCOL

expression and the original Σ-HCOL expression.

The semantic equivalence theorem is automatically proven by
applying a sequence of semantic preservation lemmas (one per
operator). This is possible because the expressions are structurally
similar and there one-to-one correspondence between operators.

An error occurs when Σ-HCOL expression contains operators which
are not part of D-HCOL. Normally, rewriting rules ensure that never
happens.
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Summary
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Summary

What have been done so far:

1 Formalization of HCOL, Σ-HCOL, and D-HCOL languages.

2 HCOL and Σ-HCOL rewriting proofs.

3 Sparse vectors, sparsity tracking.

4 Formalized operator structural properties

5 Proofs of structural properties of Σ-HCOL expressions.

6 Verified Σ-HCOL to D-HCOL compiler.

Next steps:

1 Σ-HCOL rewriting proof automation using SPIRAL trace

2 Formalzing h-Code (including operational semantics)

3 Linking D-HCOL semantics to h-Code semantics

4 Linking h-Code semantics to LLVM IR semantics

5 Dealing with floating point arithmetic.
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For Further Reading I

Yves Bertot and Pierre Castéran.
Interactive theorem proving and program development: CoqArt: the
calculus of inductive constructions.
Springer, 2013.

Franz Franchetti, Yevgen Voronenko, and Markus Püschel.
Formal loop merging for signal transforms
PLDI, 2005

Franz Franchetti, Tze Meng Low, Stefan Mitsch, Juan Pablo
Mendoza, Liangyan Gui, Liangyan, Amarin Phaosawasdi, David
Padua, Soummya Kar, Jose MF Moura, Michael Franusich, et al.
High-Assurance SPIRAL: End-to-End Guarantees for Robot and Car
Control
IEEE Control Systems, 2017
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Contact

email: vzaliva@cmu.edu
twitter: @vzaliva
web: https://github.com/vzaliva/helix
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