
Verified Translation Between Purely Functional and
Imperative Domain Specific Languages in HELIX

Vadim Zaliva1 Ilia Zaichuk2 Franz Franchetti1

1Carnegie Mellon University, Pittsburgh, PA, USA

2Taras Shevchenko National University, Kyiv, Ukraine

VSTTE’20
July 2020

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 1 / 24



SPIRAL (foundation and inspiration)

A program generation system which can generate high-performance
code for a variety of linear algebra algorithms, such as discrete Fourier
transform, discrete cosine transform, convolutions, and the discrete
wavelet transform.

It is developed since year 2000 by interdisciplinary team from CMU,
ETH Zurich, Drexel, UIUC, and industry collaborators.

It optimizes for multiple cores, single-instruction multiple-data
(SIMD) vector instruction sets, and deep memory hierarchies.

Main focus on linear operators.

Footed in linear algebra and matrix theory.

Written in GAP language with numerous extensions in C.

Uses C compiler as machine code generation backend.

Main application: Digital Signal Processing.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 2 / 24



HELIX (our work)

HELIX is inspired by SPIRAL.

Focuses on automatic translation of a class of mathematical
expressions to code.

Revealing implicit iteration constructs and re-shaping them to match
target platform parallelizm and vectorization capabilities.

Rigorously defined and formally verified.

Implemented in Coq proof assistant.

Allows non-linear operators.

Presently, uses SPIRAL as an optimization oracle, but we verify its
findings.

Uses LLVM as machine code generation backend.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 3 / 24



Spiral and HELIX

1 Mathematical formula
2 The dataflow (SPIRAL: OL language, HELIX: HCOL language)
3 The dataflow with implicit loops: (SPIRAL: Σ-OL language, HELIX:

Σ-HCOL language
4 Imperative program: (SPIRAL: iCode language, HELIX: F-HCOL

language)
5 Mainstream programming language code: (SPIRAL: C Program,

HELIX: LLVM IR program)

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 4 / 24



Approach

1 Translating a purely functional program into imperative language.

2 Mapping the layout of Σ-HCOL data to D-HCOL memory and
variables.

3 Mapping Σ-HCOL sparse vector abstraction to partially initialized
memory blocks.

4 Switching from mixed to deep embedding.

5 Handling errors.

6 Switching from carrier type to IEEE 754 floating-point numbers.

7 Switching from natural numbers to fixed bit-length machine integers.

8 Proving semantic equivalence between the original Σ-HCOL
expression and the generated D-HCOL program.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 5 / 24



Σ-HCOL Language

1 Purely functional

2 Statically typed

3 The main data type is a finite length sparse vector of carrier type
values.

4 No error handling, since potential error situations, like out-of-bounds
vector index access, are eliminated by strong, dependent typing.

5 Mixed-embedded in Coq

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 6 / 24



Σ-HCOL operators (basic)

IdOp – no-op.

Embed i n – Takes an element from a single-element input vector and puts
it at a specific index in a sparse vector of given length.

Pick i – Selects an element from the input vector at the given index and
returns it as a single element vector.

Scatter f – Maps elements of the input vector to the elements of the
output according to an index mapping function f . The mapping is injective
but not necessarily surjective. That means the output vector could be sparse.

Gather f – Works in a similar manner to Scatter, except the index
mapping function f is used in the opposite direction – to map the output
indices to the input ones.

SHPointwise f – Similar to the map function in Haskell.

SHBinOp f – Similar to the map2 function in Haskell, applied to the first
and the second half of the input vector.

SHInductor n f – Iteratively applies given function f to the input n times.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 7 / 24



Σ-HCOL operators (higher-order)

liftM HOperator hop – “lifts” HCOL operators, so they can be used in
Σ-HCOL expressions.

HTSUMUnion sop1 sop2 – A higher-order operator applying two operators
to the same input and combining their results (discussed in more detail
below).

SafeCast sop – A higher-order operator, wrapping another Σ-HCOL
operator. While not changing the values computed by the wrapped operator,
it adds a monadic wrapper to track sparsity properties.

UnSafeCast sop – Similar to SafeCast but uses a different monadic
wrapper.

IUnion f (fam: {x:nat | x<n}→SHOperator) – Iteratively applies
indexed family of n operators to the input and combines their outputs
element-wise using the given binary function f. This is an abstraction for
parallel loops.

IReduction f (fam: {x:nat | x<n}→SHOperator) – Similar to
IUnion but without assumption of non-overlapping sparsity.

SHCompose sop1 sop2 – Functional composition of operators.
Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 8 / 24



HTSUMUnion operator example

It is a higher-order operator parameterized by two operators, f and g.
Given an input vector, HTSUMUnion applies them both to the vector and
combines their results using vector union.

In structurally correct Σ-HCOL expression, it is guaranteed (proven) that
both inputs to such a union will have disjoint sparsity patterns which
guarantees that we will never try to combine two non-sparse elements.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 9 / 24



MHCOL Language

1 1-to-1 correspondence with Σ-HCOL by replacing vectors with
memory blocks

2 “M” stands for memory

3 Purely functional

4 Dynamically typed (sizes of mem blocks not enforced)

5 The main data type is a memory block of carrier type values.

6 Has error handling

7 Mixed-embedded in Coq

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 10 / 24



Vectors as memory blocks

Sparse vectors in Σ-HCOL are an algebraic abstraction for memory blocks.
Each memory block is represented as a dictionary in which the keys are
memory offsets and the values are memory values of a carrier type. There
is no mapping for keys corresponding to sparse elements.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 11 / 24



HTSUMUnion in MHCOL

Each of the two operators f and g, applied to the input vector x, produces
a corresponding dictionary, and the two dictionaries have disjoint key sets:
[0; 2] and [1; 3], respectively. They are then combined into the final
resulting dictionary y.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 12 / 24



MHCOL mixed embedding

The following record type is used to define an operator:

Record MSHOperator {i o: N} : Type := mkMSHOperator {

mem_op: mem_block → option mem_block;

mem_op_proper: Proper ((equiv) =⇒ (equiv)) mem_op;

m_in_index_set: FinNatSet i;

m_out_index_set: FinNatSet o; }.

It is indexed by the dimensions of the input and output memory blocks.
The fields include: a function implementing the operation on memory
blocks which can fail (returning None); a proper morphism instance for
this function with respect to the setoid equality equiv (required because
the carrier type is abstract); and the two sets which define input and
output memory access patterns.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 13 / 24



MHCOL memory safety properties

All MHCOL operator implementations must satisfy the following memory
safety properties:

1 When applied to a memory block with all memory cells in
m in index set mapped to values, mem op will not return an error.

2 The mem op must assign a value to each element in m out index set

and must not assign a value to any element outside of
m out index set.

3 The output block of mem op is guaranteed to contain no values at
indices outside of operators’ declared output size.

We have formulated these properties as a typeclass, MSHOperator Facts,
and proven instances of it for all operators.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 14 / 24



Σ-HCOL to MHCOL semantics preservation

The semantic equality for a pair of Σ-HCOL and MHCOL operators is defined as
the SH MSH Operator compat typeclass. It ensures that two operators have the
same dimensionality, the same input and output patterns (index sets), and are
both structurally correct (through the presence of respective SHOperator Facts

and MSHOperator Facts instances). In addition to these properties, the main
semantic equivalence statement to be proven is:

mem_vec_preservation:

∀ (x:svector i),

(∀ (j: N) (jc: j < i), in_index_set sop (mkFinNat jc) → Is_Val (Vnth x jc))

→
Some (svector_to_mem_block (op sop x)) = mem_op mop (svector_to_mem_block x)

Informally it could be stated as:

For any vector which complies with the input sparsity contract of the Σ-
HCOL operator, an application of the MHCOL operator to such vector,
converted to a memory block, must succeed and return a memory block
which must be equal to the memory block produced by converting the
result of the Σ-HCOL operator.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 15 / 24



DHCOL Language

1 Imperative.
2 The execution model assumes an environment (variables) and

memory.
1 Lexically scoped environment variables are in SSA form.
2 The operators can modify memory.

3 Each MHCOL operator is translated into not one but a sequence of
D-HCOL operators.

4 Has error handling.

5 Has operators and expressions.

6 Equipped with big-step operational semantics.

7 Deep-embedded in Coq.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 16 / 24



HTSUMUnion in DHCOL

Our earlier example, the HTSUMUnion operator, could be viewed
imperatively as a sequential execution of two operators and a combination
of their results. Since output key index sets are guaranteed not to overlap,
these operators could be computed independently (or even in parallel) and
could write to the same output dictionary, without the risk of overwriting
each others’ results.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 17 / 24



DHCOL operators

Inductive DSHOperator :=

| DSHAssign (src dst: MemVarRef) (* memory cell assignment *)

| DSHIMap (n: N) (x_p y_p: PExpr) (f: AExpr) (* indexed [map] *)

| DSHBinOp (n: N) (x_p y_p: PExpr) (f: AExpr) (* [map2] on two halfs of [x_p] *)

| DSHMemMap2 (n: N) (x0_p x1_p y_p: PExpr) (f: AExpr) (* [map2] *)

(* recursive application of [f]: *)

| DSHPower (n:NExpr) (src dst: MemVarRef) (f: AExpr) (initial: CT.t)

(* evaluate [body] [n] times. Loop index will be bound during body

eval: *)

| DSHLoop (n:N) (body: DSHOperator)

(* allocates new uninitialized memory block and makes the pointer to it

available in evaluation context at De Bruijn index 0 while the

[body] is evaluated: *)

| DSHAlloc (size:NT.t) (body: DSHOperator)

(* initialize memory block indices [0-size] with given value. *)

| DSHMemInit (size:NT.t) (y_p: PExpr) (value: CT.t)

(* copy memory blocks. Overwrites output block values, if present: *)

| DSHMemCopy (size:NT.t) (x_p y_p: PExpr)

| DSHSeq (f g: DSHOperator) (* execute [g] after [f] *).
Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 18 / 24



“Pure” DHCOL programs

Each MHCOL operator is a function x 7→ y where x and y are memory blocks. It
is a pure function without side effects, whose output y depends on x and other
variables in scope. A DHCOL translation of this MHCOL operator is an
imperative program. One memory block will correspond to x, and some other
block will correspond to y. The formalization of the class of DHCOL programs
representing pure functions is expressed as the DSH pure typeclass:

Class DSH_pure (d: DSHOperator) (y: PExpr) := {

mem_stable: forall σ m m′ fuel,

evalDSHOperator σ d m fuel = Some (inr m′) ->

forall k, mem_block_exists k m <-> mem_block_exists k m′;

mem_write_safe: forall σ m m′ fuel,

evalDSHOperator σ d m fuel = Some (inr m′) ->

(forall y_i , evalPexp σ y = inr y_i -> memory_equiv_except m m′ y_i)

}.

It has the following two properties:

1 memory stability states that the operator does not free or allocate any
memory blocks

2 memory safety states that the operator modifies only the memory block
referenced by the pointer variable y, which must be valid in σ.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 19 / 24



MHCOL to DHCOL semantics preservation

Now we can proceed to formulate the semantic equivalence between an MHCOL
operator and a “pure” DHCOL program.

Class MSH_DSH_compat

{i o: N} (σ: evalContext) (m: memory)

(mop: @MSHOperator i o) (dop: DSHOperator)

(x_p y_p: PExpr) ‘{DSH_pure dop y_p} := {

eval_equiv: ∀ (mx mb: mem_block),

(lookup_Pexp σ m x_p = inr mx) → (lookup_Pexp σ m y_p = inr mb) →
(h_opt_opterr_c

(λ md m’ ⇒ err_p (λ ma ⇒ SHCOL_DSHCOL_mem_block_equiv mb ma md)

(lookup_Pexp σ m’ y_p))

(mem_op mop mx)

(evalDSHOperator σ dop m (estimateFuel dop))); }.

The equality is defined if both operators err or both succeed, in which case, their
results must satisfy a provided sub-relation. The sub-relation (expressed via
lambda) does additional error handling via err p to ensure that y p lookup
succeeds in m′. Finally, the equality is reduced to the predicate
SHCOL DSHCOL mem block equiv relating mb, ma, and md.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 20 / 24



MHCOL and DHCOL equality relation

SHCOL DSHCOL mem block equiv represents the relation between:

mb - memory state of the output block before DHCOL execution

ma - memory state of the output block after DHCOL execution

md - values of changed output block elements after MHCOL
evaluation

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 21 / 24



MemOpDelta relation on memory blocks

Definition SHCOL_DSHCOL_mem_block_equiv (mb ma md: mem_block) : Prop

:= ∀ i, MemOpDelta

(mem_lookup i mb)

(mem_lookup i ma)

(mem_lookup i md).

Inductive MemOpDelta (b a d: option CarrierA) : Prop :=

| MemPreserved: is_None d → b = a → MemOpDelta b a d

| MemExpected: is_Some d → a = d → MemOpDelta b a d

Informally, it could be stated as:

For all memory indices in md where a value is present, the value
at the same index in ma should be the same. For indices not set
in md, the value in ma should remain as it was in mb.

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 22 / 24



Future work

1 FHCOL specialization of DHCOL with machine floating-point and
fixed-length integer types (done but out of scope of this paper)

2 DHCOL to FHCOL translation correctness proof using numerical
analysis (future work)

3 DHCOL to LLVM IR compiler (done)

4 DHCOL to LLVM IR compiler correctness proof (paper submitted)

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 23 / 24



Questions?

Project Page: spiral.net/software/helix.html

github.com/vzaliva/helix

Vadim Zaliva vzaliva@cmu.edu @vzaliva

Vadim Zaliva, Ilia Zaichuk, Franz Franchetti (CMU)Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIXVSTTE’20 July 2020 24 / 24

https://www.spiral.net/software/helix.html
https://github.com/vzaliva/helix
mailto:vzaliva@cmu.edu
https://twitter.com/vzaliva

