Reasoning About Sparse Vectors for Loops Code Generation

Vadim Zaliva, Franz Franchetti, Carnegie Mellon University

Motivating example

Pointwise operator vectorization:

Cl f(a) | O 0 0 fa)| | O f(a)

a 0| |fa)] | O 0 fa) | O f(a;)
f = + + + = + =

d, 0 o) f(a,) 0 0 f(a) [f(a.)

A, 0 0 0 | [f(as) 0 | |f(a) [f(a)

Loop Parellelization: , .
P}, = Sy oAy, oGy P}, = Shy,0 (kxo Afk) © Gy
§=0 §=0 -

Sample non-vectorized function | Sample vectorized function processing
processing single FP element. 2 FP elements at a time.

void f1(float *src, float *dst); void f2(float *src, float *dst);
Pointwise application of 'f' to src,| Pointwise application of 'f' to src,
storing results in dst, one at storing results in dst, two at a time.
a time. It requires 4 iterations It requires just 2 iterations and
and 4 function calls. 2 function calls.
for(i=0;i<4;i++) for(i=0;i<2;i++)
f1(src+i,dst+i); f2(src+2*i,dst+2%);

w N =~ O

X Y
0 f(0) Y X f(0) 0
1 o 0 0 — 1
2 < i) 1 1 i) > 2
3 f(2) 2 2 f(2) 3
3 3
f(n-1 f(n-1
f(n-1) 1 iy (n-1),
N-1 Output Input N-1
Input Output
Gather Scatter
X Y X Y
:0 > 0 Xo: Dy IEO go_’po > Yo- Po
f1 > 1 X;: D, F1 D1 P, Yi: P
f2 > 2 Xp: Dy 2Pz, Y2: P
: > 3 X3: Dy Py D7ps Ys- Ps
e - ” ; — = N\
Input Output Input Output
Input Output
Pointwise Atomic Product

The Problem

e Dense vectors are decomposed into iterative sums of sparse vectors.

e Various decompositions (number or vectors and location of
non-sparse values) could represent a variety of memory access
patterns.

e This allows applying a variety of algebraic transformations to reshape
a computation to optimize for vectorization, parallelization, sequential
memory access.

e However in such iterative sum, the addition has a special semantics:

o Mathematically, the sparse values could be treated as zeroes.
o QOperationally, combining sparse and non-sparse value could be
seen as an assignment.

e The expressions produced are naturally mapped to SSA form only
If certain constraints on structure of sparse vectors under iterative
sums are maintained.

e Tracking and enforcing such constraints for correctness proofs is
difficult, as they are not adequately enforced by mathematica
abstraction used.

e In this work we present a working approach for structural constraints
tracking and propagation used in Coq proofs of correctness.

Sparsity Requirements

1. Distinguish empty and assigned cells.
2. Treat empty cells as some “default” value. Such default value could
depend on the context (e.g. 0 for addition but 1 for multiplication).
3. In case of "a loop as sparse vector sum" we should never attempt to
combine two non-sparse elements. This type of error we will call
a “collision”.
. Sparsity tracking should be easy to perform during computations.
. Collisions should be seamlessly tracked and propagated across
the computation.
6. The collision and sparsity tracking should be proof-friendly (easy
to deal with in Coq)
/. Separate sparsity tracking from actual operations on values as they
represent two different aspects of computation.

State and Collision Tracking Monad

@) JF 1

Record Rflags : Type := mkRFlags {is_struct: bool ; is_collision: bool }.
Definition rFlagsZero := mkRFlags true false.
Definition mappend (a b: Rflags): Rflags :=
mkRFlags
(is_struct a && is_struct b)
(is_collision a Il (is_collision b Il
(negb (is_struct a Il is_struct b)))).

Definition RMonoid : Monoid Rflags := Build_Monoid mappend rFlagsZero.
Definition R, := writer Rmonoid R.

Implementation

"Diamond"” Abstraction

Scalar o: A A— A

Vector St A" = A" = A"
((307 dl,... Jan—l)a (b07 bla S bn—l)) =
(30<>b0731<>b17---aan—lobn—l)

Operation (AT A5 (A" AT 5 (A" > AT
(F,G)— (x— F(x) 3 G(x))

; n—1
lterative O F AT A
=0

0" if n=0,
X — { (Fn_l 3 C<_>02 FJ) (x) otherwise
Iterative Sum with Sparsity and Collision Tracking

Let us apply the diamond abstraction demonstrated to R, type
(which represents R with R, state) and summation
operator. To do so we specalize previous notation as follows:

Definition A = Ry.

Definition ¢ := 1iftM2 (+).

Definition ¢ := vector.map2 <.
Definition 3 f g:= A x = (f x) (g x).
Definition 0" := vector.const (ret 0) n.

This gives us a sparse, collision-tracking PointWise:
n—1

Pointwise,, r = j<=>0 (S(j),, 0Af, © GU)n)

1. Implementation in Coq proof assistant.
. Each value is tagged with two boolean flags: is_struct and
Is_collision.

. Flags structure along with combining operation forms a Monoid.

. Two Monoid instances are used: with and without collision tracking.

Flags are tracked using Writer Monad.

Operations on values can not directly examine sparsity flags

and thus can not depend on them.

7. Sparsity is automatically tracked by the monad. No implicit flags
handling in operators implementation.

8. Collision is automatically tracked and propagated by the monad.

Contact info

Vadim Zaliva <vzaliva@cmu.edu> Carnegie [=). 7 o]
SPIRAL: http://spiral.net/ Mellon 8]

N

® oA w

ICFP’17

	Page 1

