
SPIRAL Σ-HCOL formalization

Vadim Zaliva Franz Franchetti

Department of Electrical and Computer Engineering
Carnegie Mellon University

CMU Seminar, May 2017

1

1This material is based on research sponsored by DARPA under agreement number
FA8750-12-2-0291. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 1 / 29

Formal Methods

”Formal Methods refers to mathematically rigorous techniques
and tools for the specification, design and verification of software
and hardware systems”

http://shemesh.larc.nasa.gov/fm/fm-what.html

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 2 / 29

http://shemesh.larc.nasa.gov/fm/fm-what.html

A Motivating Example

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 3 / 29

Under the hood – SPIRAL

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 4 / 29

Scope and Status

Physical meaning - out of scope

HCOL formalization - done

HCOL correctness proofs - done

Σ-HCOL formalization - this presentation

Σ-HCOL correctness proofs - work in progress

i-Code correctness proofs - future work

C and machine code correctness proofs - future work

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 5 / 29

Pointwise as iterative sum

A pointwise application of a function f 1 : R→ R to all elements of vector
a could be represented as an iterative sum:

+ + +f
1
$

f(a)0

0

0

0

a0

3a

2a

1a
= =

0

0

0

f(a)1

0

0

0

f(a)3

0

0

0

f(a)2

f(a)0

f(a)1

f(a)3

f(a)2

If we have a vectorized implementation of f 2 : R2 → R2 the sum will look
like:

+f
2
$

0

0

0

0

a0

3a

2a

1a
= =

f(a)1

f(a)3

f(a)2

f(a)0 f(a)0

f(a)1

f(a)3

f(a)2

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 6 / 29

Index mapping functions

An index mapping function f has domain of natural numbers N in interval
[0,m) (denoted as Im) and the codomain of N in interval [0, n) (denoted
as In):

f m→n : Im → In

Such function, for example, could be used to establish relation between
indices of two vectors with respective sizes m and n.

0

1

2

3

4

m-1

0

1

2

3

4

n-1

f 4 =1
(

)

...
...

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 7 / 29

Families of Index Mapping Functions

We define a family f of k index mapping functions:

∀j < k , fj
m→n : Im → In (1)

The family is called injective if it satisfies:

∀n, ∀m, ∀i , ∀j , fn(i) = fm(j) =⇒ (i = j) ∧ (n = m). (2)

The family is called surjective if it satisfies:

∀j , ∃n,∃i , fn(i) = j . (3)

The family is called bijective if it is both injective and surjective.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 8 / 29

Scatter operator

Scatter operator’s data flow:

0

1

2

3

.

.

.

.

.

.

N-1

0

1

2

3

.

.

.

.

.

n-1

f(0)

f(1)

f(2)

f(n-1)

.

.

X

Y

Output

Input

!

!

!

!

!

Given an injective index mapping function f n→N the Scatter operator
Sf : Rn → RN is defined as:

y = Sf (x) ⇐⇒ ∀i < n, yj =

{
xi ∃j < N, j = f (i),

θ otherwise.
(4)

Function f must be injective. That ensures that every output vector
element is assigned exactly once. Additionally, if f is bijective it is a
permutation. If f is a partial function some elements of input vector will
not be copied to the output.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 9 / 29

Gather operator

Gather operator’s data flow:

0

1

2

3

.

.

.

.

.

.

N-1

0

1

2

3

.

.

.

.

.

n-1

f(0)

f(1)

f(2)

f(n-1)

.

.

X

Y

Input

Output

Given an index mapping function f n→N the Gather operator
Gf : RN → Rn is defined as:

y = Gf (x) ⇐⇒ ∀i < n, yi = xf (i) (5)

If f is injective then every element of input vector will be sent to output
vector at most once. Otherwise, some output vector elements can be
repeated in the output vector. If f is bijective and consequently n = N,
then Gather is a permutation.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 10 / 29

More operators

Atomic operator

Any binary function f : R→ R could be lifted to become a standalone
operator using Atomic operator:

Af : R1 → R1 (6)

[x] 7→ [f (x)]

Pointwise operator

We define Pointwise operator on vectors of dimensionality n for a family of
functions fi as:

Pn
fi

: Rn → Rn (7)

(x0, x1, . . . , xn−1) 7→
(
f0(x0), f1(x1), . . . , fn−1(xn−1)

)
Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 11 / 29

Pointwise as iterative sum

It could be shown that Pointwise operator could be expressed as a
summation:

Pn
fj

=
n−1∑
j=0

S(j)n
◦Afj ◦ G(j)n

(8)

Empty elements in sparse vectors are interpreted as zeros

By (j)n we denote constant function: In → I1 with the value j .

We will call the summand a Sparse Embedding

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 12 / 29

Sparsity Requirements

In general, the vectors we are dealing with are sparse. For example Scatter
produces a vector with missing values. To prove Σ-HCOL language
properties we need our sparse vector formalization to meet following
requirements:

distinguish empty and assigned cells

treat empty cells as some “default” value

such default value could depend on the context (e.g. 0 for addition
but 1 for multiplication)

in case of SparseEmbedding we should never attempt to combine two
non-sparse elements. This type of error we will call a collision

ideally, we would like to separate as much as possible sparsity tracking
from actual operations on values as they represent two different
aspects of computation

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 13 / 29

Sparsity Approach

An overview of our sparse vector handing approach:

Implemented in Coq Proof Assistant

Using Coq-Ext-Lib library

Each value is tagged with two boolean flags: is struct and is collision

Flags’ structure forms a Monoid which governs how they combine

Falags are tracked using Writer Monad

Operations on values could not examine directly sparsity flags and
thus could not depend on them

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 14 / 29

Monoid (Abstract algebra refresher)

A Monoid (A,⊕, 0) is an algebraic structure which consists of:

A Set A
A binary operation ⊕ : A → A→ A (AKA mappend).

A special set element 0 ∈ A (AKA mzero)

Which satisfy the following Monoid laws:

left identity: ∀a ∈ A, 0⊕ a = a

right identity: ∀a ∈ A, a⊕ 0 = a

associativity: ∀a, b, c ∈ A, (a⊕ b)⊕ c = a⊕ (b ⊕ c)

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 15 / 29

Flags Monoid

Record Rflags : Type := mkRflags {is_struct: B; is_collision: B}.

Definition mzero := mkRthetaFlags > ⊥.
Definition mappend (a b: Rflags) : Rflags :=

mkRthetaFlags

(is_struct a && is_struct b)
(is_collision a || is_collision b ||

(negb (is_struct a || is_struct b))).
Definition Monoid_Rflags : Monoid Rflags := Build_Monoid mappend mzero.

The initial flags’ value has structural flag True and collision flag False.
The mappend operation combines the two sets of flags as follows. If one
of operands is non-structural, the result is also non-structural. The
collision flags are ”sticky”. Combining two non-structural elements, causes
a collision. It could be proven that monoid laws are satisfied.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 16 / 29

What is a moand?

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 17 / 29

Monad intuition

“Monads apply a function that returns a wrapped value to a wrapped
value” 2

2
Image credit: http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 18 / 29

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

Monad in Coq

A simplified3 definition of Monad class from Coq ExtLib:

Class Monad (m : Type → Type) : Type := {
ret : ∀ {t : Type}, t → m t ;
bind : ∀ {t u : Type}, m t → (t → m u) → m u

}.

m is called a type constructor

ret “wraps” a value into a monad

bind takes a wrapped value, a function which returns a wrapped
value and returns a wrapped value

3Removed universe polymorphism
Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 19 / 29

WriterMonad

One can think about WriterMonad as a product type t × s containing
a value of type t and a state of type s. The state must be a Monoid.

Monadic ret function constructs the new WriterMonad value by
combining provided value with mzero state.

Monadic bind operator allows to combine monadic values using
user-provided functoin, and takes care of state tracking combining
states via mappend.

In additon to ret and bind the following writer-specific functions are
defined:

writer: ∀ s : Type, Monoid s → Type → Type

tell: ∀ (s: Type) (w: Monoid s), s → writer w ()
runWriter: ∀ (s t : Type) (w: Monoid s), writer w t → t×s
execWriter: ∀ (s t : Type) (w : Monoid s), writer w t → s

evalWriter: ∀ (s t : Type) (w : Monoid s), writer w t → t

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 20 / 29

Combining Rflags and WriterMonad

To track the flags while performing operations on R values we will use
Writer Monad, parametrized by a Monoid which defines how flags will be
handled:

Definition Rθ := writer Monoid_Rflags R.

To construct values of the type Rθ we define two convenience functions:

Definition mkStruct (v: R) : Rθ := ret v.
Definition mkValue (v: R) : Rθ := tell (mkRflags ⊥ ⊥) ;; ret v.

Any unary or binary operation could be “lifted” to operate on monadic
values using liftM or liftM2 respectively:

liftM: ∀ (m: Type → Type) {Monad m} (T U: Type),
(T → U) → (m T → m U)

liftM2: ∀ (m: Type → Type) {Monad m} (T U V: Type),
(T → U → V) → (m T → m U → m V)

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 21 / 29

Sparse Operator Example

Now we can define an operator:

Definition Pointwise (n: N) (f: R → R) (v: vector Rθ n): (vector Rθ n)
:= vector.map (liftM f) v.

Key points:

actual operation performing computations (f) is defined on R
all structural flags tracking is transparent

a raw vector x could be passed as an argument by lifting it via
(vector.map ret x)

a vector of raw values could be extracted from the result x by simply
applying (vector.map evalWriter x).

Correctness condition on the resulting vector x could checked using:

Definition vecNoCollision {n: N} (v: vector Rθ n) : Prop
:= vector.Forall (not ◦ is_collision ◦ execWriter) v

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 22 / 29

Iterative Operators – from dense to sparse

We have shown earlier that Pointwise operator on Rn could be expressed
as a summation:

Pn
fj
x =

n−1∑
j=0

(
S(j)n

◦Afj ◦ G(j)n
x
)

This formulation was using dense vectors, without collision tracking.
Now we would like to extend it to sparse vectors with collision
tracking.

It was using summation to combine elements. We would like to
generalize it to other operations such as multiplication.

We would like to generalize this notation to iterative operators using
pointfree notation.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 23 / 29

Operator Families

Similarly to as how we defined a family of index functions earlier we define
a family F of k operators:

∀j < k , Fj : Bm → Dn (9)

All operators in the family have the same type.

Instead of R we use abstract types B and D.

In subsequent slides we will use uppercase calligraphic letters to
denote abstract types.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 24 / 29

Scalar, Vector, and Operator Diamond

From arbitrary binary operation � : A → A→ A we can induce binary
pointwise vector diamond operation:

~� : An → An → An

((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1)) 7→
(a0 � b0, a1 � b1, . . . , an−1 � bn−1)

(10)

Next, we can define operator diamond :

�̊ : (An → Am)→ (An → Am)→ (An → Am)

(F ,G) 7→ (x 7→ F (x)~� G (x))
(11)

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 25 / 29

Iterative Diamond

Operator diamond in turn induces an iterative diamond operation for a
family of n operators F : An → An:

n−1�
i=0

Fi = F1 �̊ F2 �̊ · · · �̊ Fn

Or more formally, the recursive definition:

n−1�
i=0

Fi : An → An

x 7→

0n if n = 0,(
Fn−1 �̊

(
n−2�
j=0

Fj

))
(x) otherwise.

(12)

An additional requirement here is that the Set A forms a Monoid with
identity element 0 of type A and binary associative operation
� : A → A → A. The notation 0n denotes constant vector of identity
elements of length n.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 26 / 29

Iterative Sum with sparsity and collision tracking

Let us apply the diamond abstraction demonstrated in previous slides to
Rθ type (which represents R values with Rflags state) and summation
operator. To do so we specalize previous notation as follows:

Definition A := Rθ.
Definition � := liftM2 (+).
Definition ~� := vector.map2 �. (* generic *)

Definition �̊ f g := λ x ⇒ (f x) ~� (g x). (* generic *)

Definition 0n := vector.const (ret 0) n.

This gives us a sparse, collision-tracking Pointwise:

Pointwisen,f =
n−1�
j=0

(
S(j)n

◦Afj ◦ G(j)n

)
(13)

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 27 / 29

Summary

What have been formalized so far in Coq:

Index functions and their families

Σ-HCOL operators and their families

Sparse vectors handling

Collision tracking

Generalized notion of iterative operators

Next steps:

Proof techniques for proving structural properties

Σ-HCOL rewriting proof automation using compilation validation
approach in Coq, taking into account both value and structural
correctness.

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 28 / 29

For Further Reading I

Yves Bertot and Pierre Castéran.
Interactive theorem proving and program development: CoqArt: the
calculus of inductive constructions.
Springer, 2013.

Franz Franchetti, Yevgen Voronenko, and Markus Püschel.
Formal loop merging for signal transforms
PLDI, 2005

Franz Franchetti, Tze Meng Low, Stefan Mitsch, Juan Pablo
Mendoza, Liangyan Gui, Liangyan, Amarin Phaosawasdi, David
Padua, Soummya Kar, Jose MF Moura, Michael Franusich, et al.
High-Assurance SPIRAL: End-to-End Guarantees for Robot and Car
Control
IEEE Control Systems, 2017

Vadim Zaliva, Franz Franchetti (CMU) SPIRAL Σ-HCOL formalization CMU Seminar, May 2017 29 / 29

	Appendix

