
A Rewriting System for the Vectorization of

Signal Transforms

Franz Franchetti

Yevgen Voronenko

Markus Püschel

Department of Electrical & Computer Engineering

Carnegie Mellon University

http://www.spiral.net

Supported by: NSF ACR-0234293, ITR/NGS-0325687,

DARPA NBCH-105000, Intel, Austrian FWF

The Problem (Example FFT Performance)

reasonable

implementation

(Numerical recipes.

GNU scientific library)

best available

implementation

(FFTW, Intel IPP, Spiral)

10x roughly the same

operations count

Solution: program generators like Atlas and Spiral,

adaptive libraries like FFTW

Organization

 Spiral overview

 SIMD vector instructions

 Vectorization by rewriting

 Extension to SMP and Multicore

 Experimental results

 Summary

Knowledge of the platform: By evaluating runtime

Spiral

 Program generation from a

problem specification

for linear digital signal processing

(DSP) transforms (DFT, DCT, DWT,

filters, ….)

 Goal 1: A flexible push-button

program generation framework for

an entire domain of algorithms

 Goal 2: With new architectures,

update the tool rather than the

individual programs in the library

Spiral: generates DSP programs for SIMD vector, shared memory,

multicore, distributed memory, FPGAs, embedded CPUs
Principle 1: Domain knowledge in the systemPrinciple 2: Optimization at a high level of abstraction

Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong,

Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo,

SPIRAL: Code Generation for DSP Transforms, Proceedings of the IEEE 93(2), 2005

What is a DSP Transform?

 Mathematically: Matrix-vector multiplication

 Example: Discrete Fourier transform (DFT)

input vector (signal)

output vector (signal) transform = matrix

DSP Algorithms: Example 4-point DFT
 Algorithm = sparse matrix factorization

 Reduce computation cost from O(n2) to O(n log n)

 For every transform there are many fast algorithms

 SPIRAL generates the space of algorithms using breakdown rules

in the domain-specific Signal Processing Language (SPL)

12 adds

4 mults

4 adds 4 adds1 mult
(when multiplied with input vector x)

Some Transforms

Spiral currently contains 45 transforms

Some Breakdown Rules

Spiral currently contains 165 rules

Base case rules

SPL (Signal Processing Language)

 SPL expresses transform algorithms as structured sparse

matrix factorization

 Examples:

 Kronecker product = loop (parallel, vector)

for i = 0:n-1

y[im:im+m-1] = B·x[im:im+m-1]

endfor

Formula Level Optimization: Idea

Traditionally optimizations by

C/Fortran compilers

Formulas

Code

Move optimizations to

higher abstraction level:

Domain knowledge overcomes

compiler limitations

Formula level optimizations in Spiral:

Implemented through rewriting systems
 Loop merging

 Vectorization

 Parallelization

SIMD (Signal Instruction Multiple Data)

Vector Instructions in a Nutshell

 What are these instructions?

 Extension of the ISA. Data types and instructions for parallel computation

on short (2-way–16-way) vectors of integers and floats

 Problems:

 Not standardized

 Compiler vectorization limited

 Low-level issues (data alignment,…)

 Reordering data kills runtime

One can easily slow down a program by vectorizing it

1 2 4 4 5 1 1 3

6 3 5 7

+ + + +

vector register
xmm1

vector operation
addps xmm0, xmm1

xmm0

xmm0 Intel MMX

 AMD 3DNow!

 Intel SSE

 AMD Enhanced 3DNow!

 Motorola AltiVec

 AMD 3DNow! Professional

 Itanium

 Intel XScale

 Intel SSE2

 AMD-64

 IBM BlueGene/L PPC440FP2

 Intel Wireless MMX

 Intel SSE3

 …

A4 A4 A4 A4

A4

Vectorization of Formulas by Rewriting

 Naturally vectorizable construct

vector length (any two-power)

 Rewriting rules to vectorize formulas
Introduces data reorganization (permutations)

A4 A4 A4
Operates on 4-way vectors

vector construct

further rewriting

base case

Franchetti and Püschel (IPDPS 2002/2003)

Definition: Vectorized formula := vector constructs and base cases,

A¢B, and IA of vectorized formulas

Example: DFT

vector constructs

base cases

Formula is vectorized w.r.t. Definition

Some Vectorization Rules

Shared Memory Parallelization by Rewriting

Load balanced, contiguous blocks

No false sharing (entire cache lines are swapped)

F. Franchetti, Y. Voronenko, and M. Püschel: “FFT Program Generation for Shared Memory:

SMP and Multicore,” to appear in SC|06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 5 6 7 8 9 10 11 12 13 14 15 16 17

problem size (log2 N)

p
s
e
u

d
o

 M
fl

o
p

/s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 5 6 7 8 9 10 11 12 13 14 15 16 17

problem size (log2 N)

p
s
e
u

d
o

 M
fl

o
p

/s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4 5 6 7 8 9 10 11 12 13 14 15 16 17

problem size (log2 N)

p
s
e
u

d
o

 M
fl

o
p

/s

scalar (x87) Spiral code
(automatically generated)

scalar Spiral code + vectorizing compiler

Spiral vector code
(automatically generated)

FFTW 3.1 SSE
(adapted, but

hand-vectorized)

Intel MKL 8.1
(handcoded)

3.5x

How Good is Our Generated Vector Code?

Spiral generated code performs comparable to expertly hand-tuned code

b
etter

Complex 1D DFT on Intel Pentium 4, 3.6 GHz, 4-way SSE (float)

What About 8-way Vector Code?

0

2000

4000

6000

8000

10000

12000

14000

16000

64 128 256 512 1024 2048 4096 8192

problem sizes (N)

M
IP

S
b

etter

Complex 1D DFT on Intel Pentium 4, 3.6 GHz, 8-way SSE2 (16-bit int)

Spiral vector code
(automatically generated)

Intel IPP 5.0
(handcoded)

Spiral generated code clearly outperforms expertly hand-tuned code

0

1000

2000

3000

4000

5000

6000

7 8 9 10 11 12 13 14 15 16 17 18 19 20

problem size (log2 N)

p
s
e
u

d
o

 M
fl

o
p

/s

Combined Multicore and Vector Code
b

etter

 2.5x speed-up from parallel + vector

 Parallelization speed-up for small problems

Pentium D 3.6 GHz (Dual Core, 2-way SIMD), double precision 1-D DFT

sequential

parallel

parallel + vector

2.5x

Summary

 Parallelization and vectorization in Spiral

 Entirely automatic

 Principled approach

 Rewriting system

 Generated code is very fast

 Works for other hardware as well

 Distributed memory: MPI

with C.W. Ueberhuber, A. Bonelli, and J. Lorenz, Vienna University of Technology

 Hardware: FPGAs

with J.C. Hoe and Peter Milder, Carnegie Mellon University

www.spiral.net

(Part of the) Spiral Team

