

# High Performance SAR Image Formation On Commodity Multicore Architectures

Daniel S. McFarlin Franz Franchetti Markus Püschel José M. F. Moura



## Challenge: High Performance Mapping of Algorithms to Highly Parallel Hardware





## **Difficult for General Purpose C Toolchain**



## Spiral's Automatically Generated PFA SAR Image Formation Code

#### SAR Image Formation on Intel platforms

performance [Gflop/s]



- Algorithm by J. Rudin (best paper award, HPEC 2007): 30 Gflop/s on Cell
- Each implementation: vectorized, threaded, cache tuned, ~13 MB of code
- Code was not written by a human

## **Spiral: A Domain Specific Program Generator**





### Iteration of this process to search for the fastest

# Spiral Formula Representation of SAR





# **Parallelization through Rewriting**

#### **Threading:**

| $\frac{\mathbf{DFT}_{mn}}{mp(p,\mu)}$ | $\rightarrow$ | $\underbrace{\left((\mathbf{DFT}_m \otimes \mathbf{I}_n)T_n^{mn}(\mathbf{I}_m \otimes \mathbf{DFT}_n)L_m^{mn}\right)}_{smp(p,\mu)}$                                                                                                                             |
|---------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | • • •         |                                                                                                                                                                                                                                                                 |
|                                       | $\rightarrow$ | $\underbrace{\left(\mathbf{DFT}_{m}\otimes\mathbf{I}_{n}\right)}_{smp(p,\mu)}\underbrace{T_{n}^{mn}}_{smp(p,\mu)}\underbrace{\left(\mathbf{I}_{m}\otimes\mathbf{DFT}_{n}\right)}_{smp(p,\mu)}\underbrace{L_{m}^{nm}}_{smp(p,\mu)}$                              |
|                                       | • • •         |                                                                                                                                                                                                                                                                 |
|                                       | $\rightarrow$ | $\left((L_m^{mp} \otimes \mathrm{I}_{n/p\mu}) \otimes_{\mu} \mathrm{I}_{\mu}\right) \left(\mathrm{I}_p \otimes_{\parallel} (\mathbf{DFT}_m \otimes \mathrm{I}_{n/p})\right) \left((L_p^{mp} \otimes \mathrm{I}_{n/p\mu}) \otimes_{\mu} \mathrm{I}_{\mu}\right)$ |
|                                       |               | $\left(\bigoplus_{i=0}^{p-1}    T_n^{mn,i}\right) \Big( I_p \otimes_{\parallel} (I_{m/p} \otimes \mathbf{DFT}_n) \Big) \Big( I_p \otimes_{\parallel} L_{m/p}^{mn/p} \Big) \Big( (L_p^{pn} \otimes I_{m/p\mu}) \otimes_{\mu} I_{\mu} \Big)$                      |

#### **Vectorization:**





# $$\begin{split} &\underbrace{\left(\operatorname{DFT}_{rk}\right)}_{\operatorname{stream}(r^{s})} \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \operatorname{L}_{r}^{r^{k}} \left(\operatorname{I}_{r^{k-1}} \otimes \operatorname{DFT}_{r}\right) \left(\operatorname{L}_{r^{k-i-1}}^{r^{k}} (\operatorname{I}_{r^{i}} \otimes \operatorname{T}_{r^{k-i-1}}^{r^{k-i}}) \operatorname{L}_{r^{i+1}}^{r^{k}}\right)\right] \operatorname{R}_{r}^{r^{k}}}_{\operatorname{stream}(r^{s})} \\ & \cdots \\ & \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\operatorname{L}_{r}^{r^{k}}}_{\operatorname{stream}(r^{s})} \left(\underbrace{\operatorname{I}_{r^{k-1}} \otimes \operatorname{DFT}_{r}}_{\operatorname{stream}(r^{s})} \underbrace{\left(\operatorname{L}_{r^{k-i-1}}^{r^{k}-i} (\operatorname{I}_{r^{i}} \otimes \operatorname{T}_{r^{k-i-1}}^{r^{k-i}}) \operatorname{L}_{r^{i+1}}^{r^{k}}\right)}_{\operatorname{stream}(r^{s})}\right] \underbrace{\operatorname{R}_{r}^{r^{k}}}_{\operatorname{stream}(r^{s})} \\ & \cdots \\ & \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\operatorname{L}_{r}^{r^{k}}}_{\operatorname{stream}(r^{s})} \left(\operatorname{I}_{r^{k-s-1}} \otimes \operatorname{s}(\operatorname{I}_{r^{s-1}} \otimes \operatorname{DFT}_{r})\right) \underbrace{\operatorname{T}_{i}^{r}}_{\operatorname{stream}(r^{s})}\right] \underbrace{\operatorname{R}_{r}^{r^{k}}}_{\operatorname{stream}(r^{s})} \end{split}$$

- Rigorous, correct by construction
- Overcomes compiler limitations



## **Domain Specific FFT**



Segmented Interpolation

k segments of length r, with u–fold upsamping

#### **Pruned FFT can reduce dominant Interpolation opcount by up to 15%**



# **Performance Results**

#### **SAR Image Formation on Intel platforms**

runtime [sec]





## **Performance Results**

#### **SAR Image Formation on Intel platforms**

Percentage speedup of 2 MB pages over 4K pages





# **Conclusions and Future Work**

- Spiral generated SAR Image Formation performance comparable to hand-tuned code on the Cell
- SAR generation for non-released platforms
  - AVX
  - Larrabee

