
Carnegie Mellon

Operator Language: A Program Generation
Framework for Fast Kernels

Sponsors: DARPA DESA program, NSF-NGS/ITR, NSF-ACR, and Intel

Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University

Carnegie Mellon

The Problem: Example MMM

 Similar plots can be shown for all numerical kernels in linear algebra,
signal processing, coding, crypto, …

 What’s going on? Hardware is becoming increasingly complex.

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2xCore2Duo 3 GHz (double precision)
Performance [Gflop/s]

160x

Triple loop

Best code (K. Goto)

Carnegie Mellon

Automatic Performance Tuning

 Current vicious circle: Whenever a new platform comes
out, the same functionality needs to be rewritten and
reoptimized

 Automatic Performance Tuning
 BLAS: ATLAS, PHiPAC

 Linear algebra: Sparsity/OSKI, Flame

 Sorting

 Fourier transform: FFTW

 Linear transforms (and beyond): Spiral

 …others

Proceedings of the IEEE special issue, Feb. 2005

How to build an extensible system?
For more problem classes?
For yet un-invented platforms?

Carnegie Mellon

What is Spiral?

Traditionally Spiral Approach

High performance library
optimized for given platform

Spiral

High performance library
optimized for given platform

Comparable
performance

Carnegie Mellon

Idea: Common Abstraction and Rewriting

ν
p
μ

Architectural parameter:
Vector length,
#processors, …

rewritingdefines

Kernel:
problem size,
algorithm choice

pick
search

abstraction abstraction

Model: common abstraction
= spaces of matching formulas

= domain-specific language

architecture
space

algorithm
space

optimization

Carnegie Mellon

Viterbi DecodingLinear Transforms

Matrix-Matrix Multiplication Synthetic Aperture Radar (SAR)

interpolation 2D iFFT
matched
filtering

preprocessing

convolutional
encoder

Viterbi
decoder

010001 11 10 00 01 10 01 11 00 01000111 10 01 01 10 10 11 00

= £

£

Some Kernels as OL Formulas.

Carnegie Mellon

How Spiral Works

Algorithm Generation

Algorithm Optimization

Implementation

Code Optimization

Compilation

Compiler Optimizations

Problem specification (transform)

algorithm

C code

Fast executable

performance

S
ea

rc
h

controls

controls

Spiral

Spiral:

Complete automation of the

implementation and

optimization task

Basic ideas:

Declarative representation

of algorithms

Rewriting systems to

generate and optimize

algorithms at a high level

of abstraction

Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong,
Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo:
SPIRAL: Code Generation for DSP Transforms. Special issue, Proceedings of the IEEE 93(2), 2005

Carnegie Mellon

Organization

 Operator language and algorithms

 Optimizing algorithms for platforms

 Performance results

 Summary

Carnegie Mellon

Organization

 Operator language and algorithms

 Optimizing algorithms for platforms

 Performance results

 Summary

Carnegie Mellon

Operators

Definition
 Operator: Multiple complex vectors ! multiple complex vectors
 Higher-dimensional data is linearized
 Operators are potentially nonlinear

Example: Matrix-matrix-multiplication (MMM)

A

B

C

Carnegie Mellon

Operator Language

Carnegie Mellon

OL Tensor Product: Repetitive Structure

Kronecker product
(structured matrices)

OL Tensor product
(structured operators)

Definition
(extension to non-linear)

Carnegie Mellon

Translating OL Formulas Into Programs

Carnegie Mellon

Example: Matrix Multiplication (MMM)

Breakdown rules:
capture various forms of blocking

Carnegie Mellon

Example: SAR Computation as OL Rules

Grid

Compute

Range

Interpolation

Azimuth

Interpolation
2D FFT

Carnegie Mellon

Organization

 Operator language and algorithms

 Optimizing algorithms for platforms

 Performance results

 Summary

Carnegie Mellon

Modeling Multicore: Base Cases

 Tensor product: embarrassingly parallel operator

A

A

A

A

x y

Processor 0

Processor 1

Processor 2

Processor 3

 Permutation: problematic; may produce false sharing

x y

 Hardware abstraction: shared cache with cache lines

Carnegie Mellon

Parallelization: OL Rewriting Rules

 Tags encode hardware constraints
 Rules are algorithm-independent
 Rules encode program transformations

Carnegie Mellon

The Joint Rule Set: MMM

 Hardware constraints: base cases

 Program transformations: manipulation rules

 Algorithm rules: breakdown rules

Combined rule set spans search space for empirical optimization

Carnegie Mellon

Parallelization Through Rewriting: MMM

Load-balanced
No false sharing

Carnegie Mellon

Same Approach for Different Paradigms
Vectorization:Threading:

GPUs: Verilog for FPGAs:

Carnegie Mellon

Organization

 Operator language and algorithms

 Optimizing algorithms for platforms

 Performance results

 Summary

Carnegie Mellon

Matrix Multiplication Library

MKL 10.0

GotoBLAS 1.26

Spiral-generated library

MKL 10.0

GotoBLAS 1.26

Spiral-generated
library

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256 512

performance [Gflop/s] Dual Intel Xeon 5160, 3Ghz

Rank-k Update, double precision, k=4

Input size
0

2

4

6

8

10

12

14

16

18

2 4 8 16 32 64 128 256 512

performance [Gflop/s] Dual Intel Xeon 5160, 3Ghz
Rank-k Update, single precision, k=4

Input size

Spiral-generated library

MKL 10.0

Spiral-generated library

MKL 10.0

Carnegie Mellon

Result: Spiral-Generated PFA SAR on Core2 Quad

44 43

0

10

20

30

40

50

SAR Image Formation on Intel platforms
performance [Gflop/s]

3.0 GHz Core 2 (65nm)

3.0 GHz Core 2 (45nm)

2.66 GHz Core i7

3.0 GHz Core i7 (Virtual)

newer
platforms

16 Megapixels 100 Megapixels

 Algorithm by J. Rudin (best paper award, HPEC 2007): 30 Gflop/s on Cell

 Each implementation: vectorized, threaded, cache tuned, ~13 MB of code

Carnegie Mellon

Organization

 Operator language and algorithms

 Optimizing algorithms for platforms

 Performance results

 Summary

Carnegie Mellon

Summary

 Platforms are powerful yet complicated
optimization will stay a hard problem

 OL: unified mathematical framework
captures platforms and algorithms

 Spiral: program generation and autotuning
can provide full automation

 Performance of supported kernels
is competitive with expert tuning

A(µ)M (»)

architecture kernel

Image: Intel

