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Abstract—Upsampling of a multi-dimensional data-set is an
operation with wide application in image processing and quantum
mechanical calculations using density functional theory. For small
upsampling factors as seen in the quantum chemistry code
ONETEP, a time-shift based implementation that shifts samples
by a fraction of the original grid spacing to fill in the intermediate
values using a frequency domain Fourier property can be a good
choice. Readily available highly optimized multidimensional FFT
implementations are leveraged at the expense of extra passes
through the entire working set. In this paper we present an opti-
mized variant of the time-shift based upsampling. Since ONETEP
handles threading, we address the memory hierarchy and SIMD
vectorization, and focus on problem dimensions relevant for
ONETEP. We present a formalization of this operation within the
SPIRAL framework and demonstrate auto-generated and auto-
tuned interpolation libraries. We compare the performance of
our generated code against the previous best implementations
using highly optimized FFT libraries (FFTW and MKL). We
demonstrate speed-ups in isolation averaging 3x and within
ONETEP of up to 15%.

I. INTRODUCTION

The Fourier interpolation of a multi-dimensional data-set is
an operation with applications to image processing, quantum
mechanical calculations using density functional theory and
image acquisition algorithms like synthetic aperture radar.
Upsampling is the special case of filling in the signal at
intermediate locations, which is usually performed using a three
step process: 1) compute the frequency domain representation
of the data cube through a fast Fourier transform (FFT) 2) zero-
pad the spectrum appropriately, 3) compute the inverse FFT.
Variants exist for non-uniform up-sampling based interpolation,
and pruned FFTs [1] can be used to avoid operating on known
zero entries. The major issue with this approach is that the
inverse FFT has to operate on a much larger data set since
the zero-padded data set is 8 times the original data set for an
upsampling factor of two in three dimensions, and much larger
for higher dimensions and larger upsampling factors.

For small upsampling factors (for instance, two in each
dimension) an alternative approach is often a more efficient
way to compute the finer-resolution signal. Using the Fourier
property that time shift is equivalent to pointwise multiplication
of the spectrum with appropriately chosen complex roots of
unity [2], one can compute a signal shifted by one half of
the grid spacing, in effect computing the intermediate values
through two FFTs of the same size and a pointwise scaling.
This saves considerable operations but requires the interleaving
of the original and shifted signal which can be costly on modern

machines.

Our work was inspired by the quantum chemistry package
ONETEP [3] which performs such a two-fold upsampling on
a three-dimensional data cube, and where recent work has
shown that a time shift based approach indeed has performance
advantages [4]. The remaining issues addressed in this paper
are:

1) If one implements the time shift-based interpolation
using the best available FFT packages to compute
the forward and inverse FFTs, one is left with an
expensive data reorganization stage at the end of the
computation that needs to interleave the original and
shifted signal in all three dimensions.

2) ONETEP requires relatively small 3D FFTs (data cube
edges no larger than 200), however, the problem sizes
need to be odd due to properties of the basis functions
used.

High performance FFT kernels need to leverage single instruc-
tion, multiple data (SIMD) vector instruction sets such as Intel’s
SSE and AVX vector extensions. Implementing medium sized
odd FFT kernels using these instructions is difficult due to
the complexities introduced by alignment and vector length
divisibility. In order to address these two challenges, we perform
optimizations at two levels:

Firstly, we perform data layout optimizations and rearrange
the traversals through the data set. We manipulate the data
access patterns to perform the entire operation in two memory
round trips, and never have to interleave the data explicitly. This
cannot be implemented using standard FFT libraries, therefore
we have to build our own high performance odd sized SIMD
vectorized FFT kernels.

Secondly, we carefully cross-optimize the multiple FFT
stages that exist in convolutions underlying upsampling and
prime size FFTs. We perform vector-aware zero-padding that
inserts the minimum number of extra zeroes required by the
vector extension at the initial data loading and drops them as
the data set grows throughout the interpolation. This is a very
involved process that requires non-standard partial FFT kernels
that are not available in any standard FFT library.

Since both optimizations require non-standard high perfor-
mance FFT kernels, we used the automatic performance tuning
and program generation system SPIRAL [5] to auto-generate
and auto-tune these kernels from the algorithm and data layout
specifications we derive to perform the various optimizations.



In our experimental evaluation we establish that our op-
timized kernel is providing substantial performance improve-
ments over the best other upsampling implementation available
to ONETEP. We show that the performance is obtained both
from the memory level optimizations and the kernel level
SIMD vector optimizations. We are able to auto-tune the
upsampling operation since we generate the kernel from a
high level representation that allows for code variants.

Contribution. The paper makes these main contributions:

• We present a highly memory-optimized version of the
time-shift upsampling algorithm that computes the final
output with only two memory round trips and without
explicit interleaving.

• We present novel SIMD vectorization techniques for
prime size FFTs and for convolution like FFT-based
multi stage algorithms.

• We present a full formal specification of the vector-
ized upsampling algorithm in the Kronecker product
formalism. Using SPIRAL we demonstrate the auto-
generation of highly optimized upsampling implemen-
tations from these specifications.

In isolation we see that our interpolation kernels outperform
IMKL and FFTW by factors of 2x and 3x on average and
up to 6x and 5x, respectively. ONETEP runs for a number of
quantum chemistry relevant problem sizes show performance
gains of up to 15%.

II. ONETEP AND UPSAMPLING

A. The ONETEP Package

Background on ONETEP. ONETEP [3] (Order-N Elec-
tronic Total Energy Package) is a software package for perform-
ing quantum-mechanical calculations using density functional
theory. ONETEP achieves linear-scaling in the system size
through approximations which exploit the “nearsightedness of
electronic matter” [6].

In density functional theory, a fictitious system of non-
interacting particles can be completely described by the set of
Kohn-Sham orbitals {ψi (r)}. ONETEP reformulates density
functional theory in terms of the one-particle density matrix as
follows:

ρ (r, r′) =
∑
α

∑
β

φα (r)K
αβφβ (r

′) , (1)

where the “density kernel” K is the density matrix expressed in
the duals of a set of localized functions, {φα (r)}, called non-
orthogonal generalized Wannier functions (NGWFs). NGWFs
are constrained to be strictly localized within spherical regions
(localization spheres) and are expressed in a psinc basis set.
Psinc functions are centered on the points of a regular real-
space grid and are related to a plane-wave basis through Fourier
transforms. The density matrix ρ (r, r′) differs significantly
from zero only for points r′ within a finite volume around r,
a property ONETEP exploits.

FFT-based Interpolation in ONETEP. The computation
of quantities involving operators in momentum space requires

a Fourier transform of the real-space grid on which the
psinc functions are centered. Rather than transform the entire
simulation cell, ONETEP performs these transforms over
subsets of the grid called FFT boxes. FFT boxes are boxes
of grid points centered on an NGWF, and large enough to
contain any overlapping NGWF localization spheres in their
entirety. The relationship between NGWFs, FFT boxes and the
simulation cell is illustrated in Figure 1a.

Choosing the shape and size of the FFT box so that it
encloses any overlapping pair of support functions ensures
that operators applied inside remain Hermitian and that certain
quantities have a unique and consistent representation through-
out the calculation. As a consequence, all FFT boxes used in
a simulation are identically sized, and posses an odd number
of grid points in each dimension. It is acceptable in ONETEP
for an FFT box to be larger than the minimum determined
size. ONETEP often enlarges FFT boxes so that their size
reflects the transform sizes most efficiently computed by the
FFT library in use (typically products of small primes), but
the size in each dimension must remain odd. In the majority
of the cases, ONETEP’s enlargement process will create boxes
that will be smaller than 130 in each dimension.

The calculation of quantities in ONETEP such as the charge
density and and local potential involves expressions that contain
products between NGWFs. These products introduce high
frequency components that cannot be represented with the
existing psinc basis. Since a simple point-wise multiplication
of FFT boxes would introduce aliasing, both are interpolated
onto a psinc grid with twice as many points in each dimension
before the product is formed. Upsampling of FFT boxes is an
extremely computationally intensive part of ONETEP.

B. Upsampling Through a 1/2 Sample Shift

In order to improve ONETEP’s performance, we construct a
high-performance implementation of the interpolation operation.
Specifically, we trigonometrically interpolate a function sampled
on a three-dimensional regular grid to a grid where the number
of grid-points has been doubled in each dimension.

Baseline: Standard FFT Upsampling. It is possible to im-
plement this operation using existing discrete Fourier transform
implementations. The theoretical and actual performance of
different algorithms have been investigated in other work [4].
Typically, the data-set to be interpolated is transformed to
frequency space, followed by a padding step which introduces
new zero-amplitude high-frequency components. The signal
is transformed back to the original domain using an inverse
Fourier transform, producing the upsampled version [2].

Although it is possible to implement this operation using
two three-dimensional Fourier transforms (a forward and
a backward), there is benefit to implementing the inverse
transform using one-dimensional transforms; this is possible
due to the fact that the multi-dimensional Fourier transform
is a separable operation. The introduction of the zero-padding
causes many of the one-dimensional transforms to operate only
on zeros and can be omitted entirely [7].

Although this “padding-aware” approach eliminates trans-
forms that operate on entirely zero-valued input, there is further
redundancy due to the fact that the remaining transforms operate
on inputs that contain 50% zeros.
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(a) An FFT box centered on NGWF β, which
overlaps NGWF α. FFT box size remains
constant for the simulation and is chosen such
that when centered on an arbitrary NGWF, it
contains all overlapping NGWFs.
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(c) Phase-shift interpolation in 3 dimen-
sions [4]. 8 versions of the input signal are
interleaved to produce the final output.

Fig. 1: FFT box and interpolation operation in ONETEP.

Half-sample shift based upsampling. An alternative ap-
proach eliminates the zero-padding step entirely. In the one-
dimensional case, the algorithm (illustrated in Figure 1b)
proceeds as follows:

1) Perform a discrete Fourier transform of the input data-
set.

2) Multiply each frequency coefficient by a phase-shift
value that delays (or advances) that component by 1

2
a sample.

3) Perform an inverse discrete Fourier transform. The
resulting signal has the same frequency components
as the original signal, but is sampled at the midpoints
between samples of the original signal.

4) Interleave the original input with the interpolated
midpoint values to form the upsampled signal.

The “phase-shift“ algorithm generalizes to the multi-
dimensional case, with a “tree” of interpolations required to
construct the newly introduced points. The interpolations re-
quired in the three-dimensional case are illustrated in Figure 1c.

The interpolation of each block requires multiple one-
dimensional interpolations in a specific dimension. Once all
blocks are constructed, these are interleaved to form the
interpolated signal in a similar manner to the one-dimensional
case.

The baseline, “padding-aware” and “phase-shift” algorithms
have been implemented in the TINTL library [4] and used
to accelerate ONETEP. These implementations rely on an
underlying FFT library such as FFTW or Intel’s MKL. We
test our generated code against these implementations within
ONETEP in Section VII.

III. FORMAL FRAMEWORK

A. Kronecker Product Formalism and FFTs

In this paper we use the matrix-vector product representation
of the discrete Fourier transform (DFT) and fast Fourier
transform (FFT) [8]. In this section we briefly introduce the
Kronecker product formalism used to describe fast algorithms
as matrix factorizations. This framework is used by the SPIRAL

code generation and auto-tuning system [5] which we use to
automatically generate our interpolation kernels.

Discrete Fourier transform. The DFT of n input samples
x0, . . . , xn−1 is defined as the matrix vector product y =
DFTn x with

DFTn = [ωk`n ]0≤k,`<n with ωn = exp(−2πj/n). (2)

In (2) we are stacking the x` and yk into vectors x and y.
To derive a declarative problem specification we drop x and
y and simply think of the matrix DFTn as the transform.
Throughout the entire paper we use the DFTn notation for
the forward Fourier transform and the iDFTn for the inverse
Fourier transform.

Matrix formalism and SPL language. The fast Fourier
transform is obtained by factorizing the matrix DFTn into a
product of structured sparse matrices. In the SPIRAL system
the SPL language is used to capture data-flow at a higher level
of abstraction. The SPL language is essentially a language that
describes matrix factorization using mathematical formulas.
The entire language starts from the notion of the Kronecker
product or tensor product which can be expressed as follows:

A⊗B = [ak,`B], for A = [ak,`].

The direct sum operation ⊕ is defined as usual. Besides
the tensor product and direct sum, we also make use of
some additional elements that will help us in later derivations.
Permutations or shuffle operations are additional elements used
in the derivation of both the FFT and the 3D interpolation
algorithms. The permutations are represented as sparse matrices
such as the strided permutation Lmnm matrix or the Rader
permutation Wp matrix, defined as:

Lmnm : in+ j 7→ jm+ i, 0 ≤ i < m, 0 ≤ j < n

Wp : i 7→ gimod n, 0 ≤ i < p.

Details on other permutation matrices and how they are used
within the SPIRAL framework can be found in [9]. We also
provide a generalization for the identity matrix In, namely

Im×n =

[
In

Om−n×n

]
, m ≥ n,

Im×n = [Im Om×n−m] , m < n.



Matrix formula Matlab pseudo code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)

y = (Im ⊗ An)x
for (i=0; i<m; i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0; i<n; i++)

y[i:n:i+m*n-n] = A(x[i:n:i+m*n-n]);

y = Dnx
for (i=0; i<n; i++)

y[i] = Dn[i]*x[i];

y = Lmn
m x

for (i=0; i<m; i++)
for (j=0; j<n; j++)

y[i+m*j] = x[n*i+j];

TABLE I: From matrix formulas to code, in Matlab notation.

Here, Om×n is the m× n all-zero matrix. In×n is the identity
matrix In.

There are various identities connecting these constructs [10].
For example,

Am ⊗Bn = Lmnm (Bn ⊗Am)Lmnn and Lmnm Lmnn = Imn. (3)

Formulas can be translated into code, following Table I. Details
can be found in [5].

Fast Fourier transform. We now summarize how the
Kronecker product formalism is used to capture the fast Fourier
transform. For n = 2 the discrete Fourier transform is the
butterfly matrix

DFT2 =

[
1 1
1 −1

]
. (4)

For larger sizes N = mn that can be factorized into two
numbers, the Cooley-Tukey FFT algorithm

DFTmn = (DFTm⊗In)Dm,n(Im ⊗DFTn)L
mn
m (5)

breaks a larger DFT into a number of smaller DFTs. For prime
size FFTs, Rader’s algorithm

DFTp =W−1p (I1⊕DFTp−1)Ep(I1⊕DFTp−1)Wp (6)

breaks an DFT of prime size p into a convolution (and thus
two DFTs) of size p−1, which is guaranteed to be a composite
number for p > 3, and thus (5) applies. For p = 3, the base
case (4) applies. In (5) and (6), the Lmnm and Wp notations
represent the two different permutation matrices. Furthermore,
In is the n× n identity matrix, and Dm,n is a diagonal matrix
containing the so-called twiddle factors and the Ep matrix
is “almost” a diagonal matrix with 2 additional off diagonal
elements. More details on the different FFT algorithms can be
found in [9].

Inplace computation. We will use a A to indicate that the
operation y = Ax is to be performed inplace, i.e., the output
is being written back to the input vector. If the matrix Ak×m
is rectangular (m | k) then inplace implies that the input is
embedded in the output at stride k/m. Further, a product AB
for rectangular A implies that B scatters the data to embed
it into the output vector of A. The symbol 1 means that the
corresponding vector element will not be written as it remains
unchanged throughout the formula.

B. SIMD Vectorization of FFTs

SIMD instructions. Modern CPUs feature SIMD vector
extensions to speed up arithmetic-intensive computation kernels.
Such SIMD vector extensions add vector registers (from 2-way
for double precision SSE2 available since the Intel Pentium 4 to
16-way single precision for on Xeon Phi). Current Intel server
processors typically feature AVX, which provides 4-way double
precision vectors 8-way single precision vectors. AVX includes
an SSE compatibility mode and thus support for 2-way double
precision and 4-way single precision. Subsequent generations
of SSE and AVX introduced ever more complex instructions
to support complex arithmetic, partial vector loads/stores, and
in-register data reorganization.

Translating SPL to vector code. SIMD vectorization of
FFT algorithms relies on a simple but powerful observation: A
Kronecker product formula that is a product of the following
terms,

A⊗ Iν , Dn, Lν
2

ν , and L2ν
ν (7)

can be implemented efficiently with vector instructions [11],
[12]. Note that 4-way double precision AVX leads to ν =
2 since we have to pack complex numbers into the vector.
For instance, the two-way vectorized butterfly operation y =
(DFT2⊗I2)x can be implemented using AVX instructions and
the Intel C++ compiler intrinsics interface as follows:

__m256d x[2], y[2];
y[0] = _mm256_add_pd(x[0], x[1]);
y[1] = _mm256_sub_pd(x[0], x[1]);

The AVX implementation of y = L4
2x is given below:

__m256d x[2], y[2];
y[0] = _mm256_permute2f128_pd(x[0], x[1], 0x20);
y[1] = _mm256_permute2f128_pd(x[0], x[1], 0x31);

C. SPIRAL

SPIRAL is a program generation and optimization system
for transforms including one and higher-dimensional DFTs [5].
For a given DFT of size N , Spiral expands DFTN recur-
sively using (5) and (6) as well as other FFT algorithms
until base cases (N = 2) are reached. The resulting tensor
product expression is converted to highly efficient C code that
utilizes SIMD vector instructions (through the intrinsics/builtin
interface) and supports multithreading [12]. SPIRAL performs
empirical search to find good recursive decomposition choices
for m and n, traversing a large search space.

In this paper we extend Spiral to support the SIMD
vectorization of a large class of odd-sized FFTs, including
sizes that require loop code and Rader’s algorithm. We then
extend SPIRAL to support time shift-based interpolation and the
necessary optimization steps. In Section VII, all our results are
fully auto-generated and auto-tuned using the extended SPIRAL
system we build based on the formal algorithm description and
optimization derived in Sections V and VI.

IV. FORMALIZATION OF 3D UPSAMPLING

We now discuss how to formalize the 3D upsampling algo-
rithm in the Kronecker product formalism. This is a prerequisite
to perform optimizations through formula manipulation.



Upsampling through 1/2 sample time shift. The time
shift property of the DFT shows that shifting the signal in
the time domain is equivalent to multiplying the signal with
properly chosen complex roots of unity in the frequency domain.
Therefore, a time shifted signal can be computed by first
computing its Fourier transform, then performing a pointwise
multiplication with the complex roots of unity, and finally
computing an inverse Fourier transform. This is essentially
the convolution of the original signal with a signal consisting
of complex exponentials [2]. Specifically, the shift operator
Zkn that computes a time shifted signal by k samples (k not
necessarily integer) can be written as

Zkn = iDFTn D
k
n DFTn (8)

with

Dk
n = diag

(
1, ωkn, ω

k2

n . . . , ωk
n−1

n

)
and ωn = exp(−2πj/n).

Note that for integer k the matrix Zkn is the cyclic shift matrix
and consists of two all-one off-diagonals that rotate the data by
an integer sample increment. The 2-fold upsampling operator
U2
n can be expressed as the interleaving of the original signal

with a signal time-shifted by k = 1/2, or formally,

U2
n = L2n

n

[
In

Z
1/2
n

]
. (9)

This is the upsampling kernel we will be using for the remainder
of the paper.

3D upsampling. 3D upsampling interpolates a 3D signal by
filling in the missing data in all three dimensions. It represents
an increase of the resolution in each dimension, i.e. finds a
smooth signal that goes through the grid points and has the same
energy, and sample that signal according to the new sample rate.
The 3D upsampling can be represented as Kronecker product
of 1D upsampling operations,

U2×2×2
k×m×n = U2

k ⊗ U2
m ⊗ U2

n. (10)

Higher-dimensional FFT-based upsampling is a separable oper-
ation, due to the properties of the FFT. Therefore, performing
3D FFT-based upsampling reduces itself to applying the 1D
upsampling operation to all pencils in each dimension, similar
to the row-column FFT algorithm.

Row-column algorithm. 3D upsampling is best done using
the 3D row-column algorithm that first works within contiguous
data planes (the xy plane), and then does a final upsampling
along the z dimension. Formally, this can be described by the
matrix factorizations

U2×2×2
k×m×n =(U2

k ⊗ I4mn)(Ik ⊗ U2×2
m×n) and (11)

U2×2
m×n =(U2

m ⊗ I2n)(Im ⊗ U2
n). (12)

This approach is similar to the slab decomposition for 3D FFTs
and ensures maximum locality and cache reuse for problem
sizes where a full plane fits into a cache level. This situation
is applicable in our case, as k, m, and n are relatively small
such that a data plane fits into cache, but the full upsampled
cube of memory footprint 8kmn becomes too big for the last
level cache for many of the sizes of interest to ONETEP.

z 

for all x-pencils in the xy-plane 
do: 
    1. 1D interpolate 
    2. Store line 
    3. Skip line 
for all y-pencils in the xy-plane 
do: 
    1. 1D interpolate 
    2. fill in holes 
 

x-pencil 

x 

y 

z iteration 
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y 

it
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for all xy-planes in the  
                   xyz-cube do: 
    1. 2D interpolate 
    2. Store slice 
    3. Skip slice 
for all z-pencils in the 
                    xyz-cube do: 
    1. 1D interpolate 
    2. fill in holes 
 

x iteration 

Fig. 2: Two-pass upsampling approach in SPIRAL-generated
code. Original data is touched only once. Subsequent upsmpling
pencils fill in the holes only through 1/2 sample shift.

V. LOCALITY AND MEMORY HIERARCHY OPTIMIZATION

In this section we discuss the memory hierarchy optimiza-
tions. We perform two main optimizations: Firstly, we perform
a data layout transformation that writes all the interpolated data
immediately to its final location, avoiding a final data shuffle
stage. Secondly, we perform loop merging that merges FFT
stages from adjacent forward and inverse FFT transforms and
pointwise scaling to minimize the times the data set needs to
be traversed.

A. Locality and Data Layout Optimization

The original upsampling approach discussed in Section II-B
computes 8 data blocks separately that in the end need to be
interleaved in one big copy operation that involves inefficient
strided access. In our formalization, the 1D upsampling
operation (9) implies that the input data first time-shifted by 1/2
sample and then the original data is interleaved with the time
shifted data, requiring strided memory access and an inefficient
copy operation. The corresponding 2D and 3D upsampling
operations (11) and (12), respectively, imply that the whole data
set has to be interleaved three times, once for each dimension.
Either approach is inefficient.

Main idea. Careful analysis shows that the correct break-
down of the 3D interpolation together with a data layout
transformation allows us to write the data at the final location
as each time shift kernel produces the data. The first stage in
addition needs to copy the original data to its final location.
Correctly picking the order of upsampling dimensions as given
by (11) and (12) makes the writes cache friendly as every cache
line that gets touched is written completely, and touched only
once.

We show the procedure in Fig. 2. We first upsample the
xy plane, followed by upsampling the z pencils. Together with
copying the original data, the x pencils upsampling output
is written to memory so that original and shifted data are
interleaved. Between two x pencils space for the y direction
upsampling is left. The y pencil upsampling fills in the blanks
left by the x upsampling. Between two adjacent xy planes, an
empty xy plane is left, that will be filled in by the z pencils.

The x direction is the fastest varying dimension, thus this
approach is compatible with SIMD vectorization and cache



lines. In addition, the last level cache can hold at least one
xy plane, and proper traversal of the xy iteration space when
computing the z pencils ensures cache friendliness of the z
pencil stage.

We now express this optimization formally using the
Kronecker product formalism.

x pencils. The first stage computes the x pencils, i.e., in
x direction the shifted version of the input data. It takes the
original and shifted input, interleaves the two data sets and
finally scatters the entire data to the final destination in the
output array. The full sweep over an xy plane where all the x
pencils are computed and empty pencils are interleaved between
upsampled x pencils to spread the data out properly in the xy
plane is given by

Uxn = Im ⊗
[
U2
n

O2n×n

]
. (13)

y pencils. The second stage reads the non-zero values
of y pencils from their final location, computes the shifted
intermediate values and inserts them between the values already
computed by the x traversal. The interpolation kernel

Uym =

([
0

1

]
⊗ Im

)(
Z1/2
m ⊗ [1 0]

)
gathers data from a y pencils at stride 2 (starting at element
0), computes the shifted version, and writes them in y pencil
at stride 2 (starting at element 1).

z pencils. The third stage reads the non-zero values of
z pencils from their final location, computes the shifted
intermediate values and inserts them between the values already
computed by the x and y traversals. The interpolation kernel
Uzn = Uzn gathers data from a z pencils at stride 2 (starting at
element 0), computes the shifted version, and writes them in z
pencil at stride 2 (starting at element 1).

Full upsampling algorithm. We now give the full upsam-
pling algorithm as SPL formula. The timeshift operation that
gathers data from a x or y pencil and inserts them between
the original values can be written as

Z` = L2n
n

[
In ⊗ [1 0]

Z
1/2
` ⊗ [1 0].

]
(14)

We now express the operation on an xy plane as

Uxym×n =
(
Zm ⊗ I2n

)
(Im ⊗ Uxn). (15)

The full algorithm can now be expressed as

U2×2×2
k×m×n =

(
Zk ⊗ I4mn

)(
Ik ⊗

[
Uxym×n
O4mn

])
. (16)

B. Merging of FFT Stages in Convolutions

The memory level optimization so far ensures that data is
written exactly once, at the right final location, all data access
patterns are compatible with cache-based memory hierarchies.
It takes advantage of the relatively small edge length of the
data cube by employing the slab decomposition to break down
the computation into two phases, instead of 3 phases that would
result from the standard row-column approach. The remaining
memory level optimizations are targeting data reuse inside the

cache by merging of loops that traverse the data set in multiple
passes.

FFT stage merging. We leverage the observation that the
core operation in upsampling is a FFT-based convolution, as
shown in (8). Expanding the DFT in (8) with (5) and the iDFT
with the transposed rule, we obtain

Zkmn = Lmnn (Im ⊗ iDFTn)D
′
m,n(iDFTm⊗In)

Dk
mn(DFTm⊗In)Dm,n(Im ⊗DFTn)L

mn
m . (17)

For DFT sizes where DFTm and DFTn can be implemented
as basic block but DFTmn requires loop code, (17) can be
implemented using 4 passes through the data by merging the
permutations and diagonals with the tensor products [9]. Using
a parameterized version of the tensor product, ⊗i, that allows
the non-identity matrix factor to be dependent on the location
of the 1 in the identity matrix [5], we can merge the last stage
of the forward FFT with the diagonal and the first stage of the
inverse FFT,

(iDFTm⊗In)Dk
mn(DFTm⊗In)

= (iDFTmD
k,i
mnDFTm)⊗i In, (18)

which leads to a 3 stage implementation for (17). The key idea
is to expand the inverse FFT and the forward FFT so that their
data flow graphs are the mirror image of each other, which can
always be accomplished.

Stage merging in Rader’s FFT. A similar pattern is seen
in the Rader algorithm (6) that breaks down an DFT of prime
size p into a convolution of size p − 1. Except for the two
off-diagonal elements in Ep the same approach as for merging
loops in (17) can be applied. This way Rader’s FFT can be
implemented with three stages as well when DFTp is too big
for unrolled code but DFTm and DFTn for m,n | p− 1 can
be unrolled.

The same idea can now be applied to convolutions of prime
size that require Rader’s FFT for the DFT/iDFT. In this case
three neighboring DFT/iDFT stages need to be merged: merging
the DFT/iDFT stages in the two Rader FFT kernel for the
convolution DFT and iDFT, respectively, and merging of the
DFT/iDFT stages for the convolution due to (8). The full prime
size 1D shift operation Zkp then requires 5 stages.

VI. VECTORIZATION

In the previous section we optimized the upsampling kernel
for the memory hierarchy. The remaining task is to optimize the
1D pencil kernels for the SIMD vector instructions present on
all modern microprocessors. This task involves three sub-steps:
1) SIMD vectorization of the odd-sized 1D FFT kernels through
vector-aware local zero-padding, 2) cross-block optimization
of the FFT and iFFT in the convolution kernels to reduce zero-
padding overhead at the boundaries of the 1D FFT kernels,
and 3) optimization of the three upsampling phases of the
3D upsampling kernel to take advantage of the fill-in and 3D
anisotropy of the memory linear memory viewed as data cube.

A. Vectorization of Odd-Sized FFTs

The quantum chemistry package ONETEP has somewhat
unusual FFT requirements: 1) the FFTs need to be odd-sized
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due to the properties of the basis functions used, and 2) the
FFT sizes of interest are smaller than 130, thus medium-sized,
i.e., too large for unrolled basic blocks but small enough that
they can be computed with two stages. Therefore, neither the
approach taken by FFTW’s genfft [13] nor by SPIRAL’s
odd sized vectorized FFT kernels [1] are applicable.

In the remainder of this section we extend SPIRAL’s
approach from unrolled odd-sized FFTs to loopable medium-
sized FFTs. The following two novel techniques were necessary:
1) a loopable odd-size short vector Cooley Tukey FFT variant,
and 2) a loopable short vector Rader FFT variant and
convolution.

Approach. (7) in Section III-B collects the formula con-
structs that can be translated into SIMD vector instructions
efficiently. In particular, for arbitrary A, A ⊗ Iν can be
implemented solely with vector instructions with vector length
ν. Constructs A⊗ In with ν not dividing n cannot be mapped
directly to vector instructions in an efficient way. The idea of
vector-aware zero-padding [1] provides a solution: as data gets
first loaded, zero-extend the vectors, and as the final result
is written to memory, un-pad, i.e., only store the elements
that correspond to originally loaded elements. Formally, this is
expressed as

Am⊗In = (Im⊗In×νdn/νe)(Am⊗Iνdn/νe)(Im⊗Iνdn/νe×n).

This is the only new construct needed to describe very
sophisticated zero-padding operations necessary to implement
loopable odd-sized FFT algorithms.

Algorithm. We now derive the loopable short vector Cooley
Tukey FFT for odd sizes. We start from (5), and use (3) to
flip the right tensor product and move the stride permutation
between the two stages, leading to the Four Step FFT algorithm,

(DFTm⊗In)Dm,nL
mn
m (DFTn⊗Im).

Next we carefully zero-pad to the minimum extent necessary.
We define m′ = ν dm/νe, n′ = ν dn/νe. (19) in Fig. 4 shows
the final formula.

Discussion. (19) has two stages, each of which performs
iterations of DFTm⊗Iν or DFTn⊗Iν . The loops are extended

to a trip count that is divisible by ν. The zero-padding via
Im′×m and unpadding via In×n′ is minimized, and only for
the central stride permutation Lm

′n′

m′ that is factorized into three
terms full padding is needed. The twiddle diagonal Dm,n is
zero-padded as well and moved to the right FFT stage.

The overhead is kept to a minimum, and all operations
are performed with vector operations of length ν = 2. Lν

2

ν
is a construct in (7) and can be implemented efficiently with
vector instructions. In a high performance implementation the
padding is fused into the load operation of the first stage but
then requires one loop iteration to be peeled to handle the zero
extension. Fig. 3 shows the data flow graph of (19) for DFT15

with ν = 2, m = 3, and n = 5 and the stride permutation L24
4

not factorized.

B. Vectorization of Convolutions and Rader FFT

The core operation in pencil upsampling is a convolution,
given by (8). This requires that an DFT and iDFT are computed
back-to-back (with an intermediate scaling operation). Similar
to the optimizations in Section V-B we can take advantage of
this fact to minimize the number of padding and unpadding
operations.

Vectorization of convolution. We utilize that for k > `,

Ik×`I`×k = I` ⊕Ok−`. (20)

We now write the 1D 2x upsampling operation U2
mn as

Amn×m′n(In ⊗ Im′×m)Dk
mn(In ⊗ Im×m′)Bm′n×mn, (21)

using (17) and (19). We are expanding the iDFTmn using the
expansion of DFTmn and apply the identity iDFTn = DFTHn
with (.)H denoting conjugate-transpose. In (21) Amn×m′n
represents the full expansion of the iDFT according to (19),
except for the zero-padding stage. Bm′n×m′n represents the
full expansion of the DFT according to (19), except for the
unpadding stage. Padding and unpadding have been made
explicit. By applying (20) to (21) we obtained the optimized
convolution/upsampling formula

U2
mn = Amn×m′nD

′k
mnBm′n×mn (22)

where the padding and unpadding has been dropped. The
diagonal matrix Dk

mn is extended from size mn × mn to
m′n × m′n, with zeroes inserted according to the dropped
padding/unpadding stages.

Vectorization of Rader’s FFT. Since Rader’s FFT com-
putes the DFT for a prime size p by convertting it into a
convolution of size p − 1, the same idea applies. The only
additional complication arises from the fact that Ep is not
exactly a diagonal matrix and that the permutations Wp cannot
be vectorized and are hard to loop. Our solution is to implement
a vector gather/scatter on complex elements and use an
indirection table with the precomputed indices to avoid on-
line computation of integer exponentiation and modulo.

C. Vectorization of the 3D Upsampling Kernel

There are a few more vector optimizations necessary for
the full 3D upsmapling operation beyond the optimization of
the 1D pencil upsampling.



DFTmn = (Im ⊗ In×n′)
(
(DFTm⊗In′′)⊗ Iν

)
D′m,n(In′ ⊗ Im×m′)

(
Lm

′n′′

m′ ⊗ Iν
)(

Im′′n′′ ⊗ Lν
2

ν

)(
In′′ ⊗ Lm

′

m′′ ⊗ Iν
)
(Im′′n′×m′′n ⊗ Iν)

(
(DFTn⊗Im′′)⊗ Iν

)
(In ⊗ Im′×m) (19)

Fig. 4: Loopable Short Vector Cooley Tukey FFT for odd sizes, with m′ = ν dm/νe, n′ = ν dn/νe, m′′ = m′/ν, n′′ = n′/ν.

Zero-padding. The first observation is that the data can stay
zero-padded across interpolation stages at very little memory
cost, avoiding unpadding and re-padding between x and y
pencils and y and z pencils. Due to the fill-in at each stage
only for vector lengths ν > 4 unpadding at the end of the z
pencils is necessary–in all other cases the 8-fold expansion of
data volume makes unpadding unnecessary.

Vectors of DFTs. The second observation is that for the y
and z pencils, one can compute a vector of DFTs,

DFTn⊗Iν ,

instead of having to vectorize the actual DFT. This allows
stage 2 and 3 to be computed without vector overhead. The
only shuffle operations in these stages are due to shuffles
required for complex multiplications. However, since the data
cube dimension is odd, zero-padding is happening in the loop
traversing the pencils. In stage 2, there are 2m iterations and
in stage 3 there are 4km, limiting the zero-padding overhead.

Interleaving. Finally, in the first stage, the original data
needs to be merged with the interpolated data. This happens
along the fastest varying dimension and thus has to happen
within vector registers. By picking the x dimension as the first
dimension to work on we are minimizing the overhead of data
copying and ensure vector memory access.

VII. EXPERIMENTAL RESULTS

Setup. We now evaluate the performance of our approach.
We run experiments across a variety of Intel CPUs that feature
the SSE and AVX instruction set extensions: 1) 3.5 GHz
Haswell 4770K, 2) 3.3 GHz Ivy Bridge Xeon E3-1230, and
3) 2.1 GHz Sandy Bridge Xeon E5-2620. We use the Intel
C++ Compiler 14.0.1, Intel MKL 11.0.0, FFTW 3.3.4, and
ONETEP 4.1.5.8. We compare three performance aspects:
1) performance of the interpolation kernel in isolation, 2)
performance of the underlying 1D FFTs, and 3) performance
impact of our interpolation kernel on a ONETEP NGWF
optimization iteration. We compare our implementations to
the hand-written TINTL interpolation routine [4]. Finally, we
analyze the vector instruction throughput. We show results for
both the split complex and interleaved complex data format.

Metric. Performance is given in Pseudo Gflop/s which
is computed as 5N log2N for an 1D FFT of size N (N an
arbitrary positive integer). This leads to an operation count of
80N3 log2N +32N3 for the interpolation operation. This is a
performance measure that essentially compares inverse runtime
but gives an indication of the performance one sees, and is a
standard measure in FFT benchmarking [14].

Interpolation performance. First we investigate the perfor-
mance of the full interpolation kernel in isolation. In Figs. 5 (a)
and (b) we compare across both data formats and two machines.
We see that the SPIRAL-generated upsampling kernel for both

machines and data formats for most data points outperforms
the FFTW and MKL based implementations by a large margin
(typically a factor of 2 to 3 except for some large prime
numbers). The gain is more pronounced for the interleaved
data format. This format is more demanding for optimization
as either complex multiplications within a vector are required
or data needs to be de- and re-interleaved multiple times. In
contrast, the split format is relatively easier to optimize.

FFT performance. In Figs. 5 (c) and (d) we investigate
the performance of the underlying 1D FFTs. We compare the
best fit performance (timing them with hot cache) of 1D FFTs
provided by FFTW and MKL to the SPIRAL-generated FFTs.
For interleaved input we see that SPIRAL-generated FFTs
outperform both FFTW and MKL considerably for most of
the sizes. However, for small sizes and numbers with small
prime factors, FFTW and MKL are well-optimized and there
our generated code is slightly slower that MKL. For the split
input format SPIRAL-generated code outperforms both MKL
and FFTW for all but 2 sizes, and most of the times the
performance gain is between 50% and 2x. Finally, we see that
both FFTW and MKL contains highly optimized kernels for
small prime sizes and a inefficient catch-all implementation
for the unoptimized sizes. SPIRAL’s gain stem from providing
highly optimized kernels for all sizes.

An interesting observation is that the FFT and MKL FFT
performance has very high spikes for 1D problem sizes that
have a simple prime factorization. However, the corresponding
3D interpolation performance is much less spiky. In particular,
while the 1D FFTs of FFTW and MKL occasionally outper-
form the 1D SPIRAL-generated FFTs, the SPIRAL-generated
interpolation kernels outperform the handwritten interpolation
powered by FFTW and MKL. This shows the impact of the
data layout transformations and the loop merging we performed
to optimize the 3D upsampling.

Performance portability. Fig. 5 show that our auto-
tuning approach provides highest performance across multiple
machines. The code run on each machine is specifically tuned
to the machine’s microarchitecture and memory hierarchy. We
would observe a substantial drop in performance if we used
the same code on all machines.

Impact on ONETEP. Finally, we evaluate how our opti-
mized kernels perform inside ONETEP for interpolation sizes
of practical relevance. For our test problem, we use an 181-
atom “tennis-ball” molecule that is used as a model of the
ligand binding cavity of a protein. We vary cutoff energies in
order to change the resolution of the grid used to describe the
NGWFs and influence FFT box size. Due to time constraints,
the number of iterations in the NGWF optimization inner and
outer loops were limited to 1. Fourier interpolation is used in
both outer and inner loops, but 5-10 inner iterations is more
typical of a simulation.
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Fig. 5: Performance of 3D upsampling and 1D FFTs on a range of CPUs, for both split and interleaved format. We use purple
bars for sizes where FFTW outperforms Intel MKL and dark blue bars for the minimum of FFTW and MKL (typically FFTW).

Fig. 6 shows runtime results for ONETEP’s NGWF opti-
mization running on 4 cores with OpenMP, where FFT runtime
accounts for approximately 50% of the runtime. ONETEP
supports OpenMP and MPI parallelisation, enabling it to scale
to thousands of cores [15]. However, for interpolation, we are
primarily concerned with intra-node performance optimizations.
We compare unmodified ONETEP and two variants of ONETEP
modified to use TINTL [4]. TINTL using MKL chooses the best-
performing interpolation implementation of three (Sec. II-B),
all of which are hand-written and depend on the performance of
underlying FFTs. We see that the Intel MKL-based interpolation
approach using TINTL [4] outperforms baseline ONETEP by
20% to 30%. TINTL+SPIRAL-generated code is on equal with
ONETEP+TINTL for smaller sizes and for larger sizes we
see an additional 10% to 15% runtime reduction. Since each
benchmark problem uses a specific FFT-box size, overall speed-
up is correlated with the upsampling performance obtained for
that particular problem size.

Vector instruction throughput. In Fig. 7 we show the
throughput of our generated interpolation kernel. We show
floating-point throughput (vector adds and vector multiplies per
cycle) and vector shuffles (shuffle instructions and load/store
operations that require extra shuffles, as used for partial loads
and stores). We see that our code sustains between 0.6 and 1.2
vector flop/cycle (2.4 to 4.8 flop/cycle), and there is an overhead

of about 0.2 to 0.5 vector shuffles/cycle. This shows the high
efficiency of our algorithm, vectorization, and generated code.

VIII. RELATED WORK

Our algorithm is based on the time shift-based interpolation
algorithm developed for ONETEP [3], [4]. The memory locality
optimizations are inspired by distributed memory FFT libraries
that use the slab decomposition [14]. Our vectorization approach
extends previous SIMD vectorization inside SPIRAL [11], [1]
but adds support for prime numbers and problem sizes that need
looped kernels. FFTW’s genfft [13] auto-generate SIMD
vectorized FFT kernels but does not handle zero-padding and
global cross-stage optimization. Intel’s MKL and IBM’s ESSL
provide high performance FFT implementation that supports
many sizes, albeit at varying performance levels. Other formal
specification approaches for numerical algorithms include
FLAME [16] and TCE [17]. Important auto-tuning libraries
for numerical kernels include ATLAS [18] and OSKI [19].

IX. CONCLUSIONS

In this paper we presented the scope of effort necessary to
optimize a mathematical kernel function for which for the most
part highly optimized libraries exist, but where a small part
of the algorithm must be implemented by hand. Upsampling
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of a 3D data cube of odd edge lengths through a frequency-
domain method as required by the quantum chemistry package
ONETEP is an example of a kernel that is unusual in many
respects (odd size, small size, small upsampling factor). This
translates into a lack of optimization in standard libraries. In
addition, many necessary optimizations cannot be realized by
optimizing FFTs but only when the whole operation optimized.
We demonstrate that through data layout transformations and
SIMD vectorization tricks a speedup of up to 6x (2x on
average) over the best other available code (that uses FFTW
and Intel’s MKL) can be obtained for the kernel in isolation.
Inside ONETEP, this translates into up to 15% speed-up.
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