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ABSTRACT
The well-known shift to parallelism in CPUs is often associated
with multicores. However another trend is equally salient: the
increasing parallelism in per-core single-instruction multiple-date
(SIMD) vector units. Intel’s SSE and IBM’s VMX (compatible to
AltiVec) both offer 4-way (single precision) floating point, but the
recent Intel instruction sets AVX and Larrabee (LRB) offer 8-way
and 16-way, respectively. Compilation and optimization for vector
extensions is hard, and often the achievable speed-up by using vec-
torizing compilers is small compared to hand-optimization using
intrinsic function interfaces. Unfortunately, the complexity of these
intrinsics interfaces increases considerably with the vector length,
making hand-optimization a nightmare. In this paper, we present a
peephole-based vectorization system that takes as input the vector
instruction semantics and outputs a library of basic data reorgani-
zation blocks such as small transpositions and perfect shuffles that
are needed in a variety of high performance computing applica-
tions. We evaluate the system by generating the blocks needed by
the program generator Spiral for vectorized fast Fourier transforms
(FFTs). With the generated FFTs we achieve a vectorization speed-
up of 5.5–6.5 for 8-way AVX and 10–12.5 for 16-way LRB. For
the latter instruction counts are used since no timing information is
available. The combination of the proposed system and Spiral thus
automates the production of high performance FFTs for current and
future vector architectures.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—Code generation,
Optimization
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1. Introduction
Power and area constraints are increasingly dictating microar-

chitectural developments in the commodity and high-performance
(HPC) CPU space. Consequently, the once dominant approach of
dynamically extracting instruction-level parallelism (ILP) through
monolithic out-of-order microarchitectures is being supplanted by
designs with simpler, replicable architectural features. This trend is
most evident in the proliferation of architectures containing many
symmetrical processing cores. Such designs provide for flexible
power management and reduced area by trading dynamic ILP for
static, software-defined thread-level parallelism. A similar trade-
off is occurring with the steadily increasing vector-width and com-
plexity of single-instruction-multiple-data (SIMD) vector instruc-
tion sets.

AVX and Larrabee. Intel’s recent AVX and Larrabee (LRB) ar-
chitectures feature 256-bit and 512-bit vector-lengths respectively;
architectures with 1024-bit long vectors are already planned [2, 24].
Vector functional units and vector registers are regular structures
which are fairly easy to replicate and expand. Like multiple cores,
vector units provide for flexible power management in that indi-
vidual vector functional units can be selectively idled. SIMD in-
structions also represent a form of scalar instruction compression
thereby reducing the power and area consumed by instruction de-
coding. Collectively, this architectural trend towards multiple cores
and wide vectors has fundamentally shifted the burden of achieving
performance from hardware to software.

Programming SIMD extensions. In contrast to multiple cores,
SIMD architectures require software to explicitly encode fine-grain
data-level parallelism using the SIMD instruction set. These SIMD
instruction sets are quickly evolving as vendors add new instruc-
tions with every CPU generation, and SIMD extensions are incom-
patible across CPU vendors. Consequently, explicitly vectorized
code is hard to write and inherently non-portable. The complex-



ity of SIMD instruction sets complicates hand-vectorization while
auto-vectorization just like auto-parallelization poses a continuing
challenge for compilers.

The latest version of production compilers (Intel C++, IBM XL
C, and Gnu C) all contain autovectorization technology [17, 36, 15]
that provides speed-up across a large class of computation kernels.
However, for many kernels like the fast Fourier transform (FFT)
and matrix multiplication, the results are usually suboptimal [8]
since optimal vectorization requires algorithm knowledge or there
are simply too many choices that the compiler cannot evaluate.

Much of the difficulty in vectorization lies in the instructions re-
quired to transform and keep data in vector form. These shuffle
or permutation instructions are generally the most complex and ex-
pensive operations in the SIMD instruction set. They tend to scale
poorly, may not support arbitrary permutations and their parame-
ters become increasingly non-obvious to use, especially with wider
vector units. From a performance point of view, shuffle instructions
are the overhead imposed by vectorization, which prevents the per-
fect speedup linear in the vector length. Consequently, minimizing
the number and cost of shuffles is crucial.

Contribution. This paper makes two key contributions. First,
we present a super-optimization infrastructure that takes as input
the instruction set specification and automates the discovery of ef-
ficient SIMD instruction sequences for basic data reorganization
operations such as small matrix transpositions and stride permuta-
tions. These are required, for example, by many high performance
computing kernels including the FFT and linear algebra kernels.

Second, we incorporate this infrastructure into the library gen-
erator Spiral to generate the reordering blocks needed for FFT
vectorization [8]. This approach effectively automates the port-
ing of FFTs to new vector architectures. We then evaluate efficacy
by automatically generating vectorized FFTs for AVX and LRB.
We demonstrate speed-ups (measured using runtime or instruction
counts) of 5.5–6.5 for 8-way AVX and 10–12.5 for 16-way LRB.
We also compare the AVX code against Intel’s IPP. For LRB, no
benchmarks are available at the time of writing.

Besides this main contribution, with AVX and Larrabee it now
becomes possible to study efficiency and overhead of vectorization
methods across a range of vector lengths: 2, 4, 8, and 16 for single-
precision floating-point. We include such a study for Spiral’s FFT
vectorization.

2. Related Work
The work in this paper extends the SIMD support in the Spiral

system. It is related to vectorization techniques developed for tra-
ditional vector computers, SIMDization techniques developed for
short length SIMD vector instruction sets, superoptimization, and
SIMD support by program generators like FFTW.

SIMD instructions in Spiral. The inspiration for this work
comes from earlier work extending Spiral [29, 7, 9] to SIMD vec-
tor architectures. Spiral is a domain-specific library generator that
automates the production of high performance code for linear trans-
forms, notably the discrete Fourier Transform [35]. Previous efforts
to extend Spiral to SIMD vector architectures are described in [6,
8, 10]. Spiral’s approach breaks the vectorization problem into two
stages. First, rewriting produces SIMD FFTs [6, 8, 10] that reduce
the problem to a small set of basic reordering operations (matrix
transpositions of small matrices held in SIMD registers). Second, a
small code generator is used to produce short instruction sequences
for these operations [11] given only the instruction set specification
as input. Unfortunately, experiments showed that the method in
[11] does not scale (i.e., is too expensive) to AVX and LRB. Hence
the motivation for this paper, which offers a replacement for [11]
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Figure 1: The dataflow of an SSE-vectorized kernel. The com-
putation is an element-wise multiplication of two complex input
arrays (blue and red) of length four in interleaved format.

that is designed for both longer vector lengths and more complex
instruction sets.

Vectorization. Automatic vectorization has been the subject
of extensive study in the literature. Two excellent references are
[21, 37]. Vectorization becomes (again) increasingly important for
SIMD extensions like Larrabee and the latest versions of SSE (SSE
4.1) that allow for efficient implementation of gather/scatter opera-
tions and large data caches, since the conditions on such architec-
tures are similar to traditional vector computers.

SIMDization. Originating from SIMD within a register (SWAR)
[5, 34], SIMDization was recognized as a hybrid between vec-
torization and instruction level parallelism extraction [1]. Recent
advances in compilation techniques for SIMD vector instruction
sets in the presence of alignment and stride constraints are de-
scribed in [4, 28]. SIMD instruction extraction for two-way archi-
tectures aimed at basic blocks is presented in [22]. This technique
is included in FFTW 2.1.5 [13, 12] and has shown good perfor-
mance improvements across multiple two-way SIMD extensions.
FFTW3 [14] contains SIMD codelets for SSE and AltiVec, sup-
porting vector lengths of 2 and 4.

Superoptimization. The classic paper on super-optimization is
[26] while [3] presents a modern approach that is close in spirit to
our own. A dataflow-graph and integer-linear programming based
approach to finding SIMD permutations was described by [23] and
is similar to our approach though it is unclear what sort of vector-
ization efficiencies are attained. The approach explored in [30] also
focuses on SIMD permutations with an emphasis on linear trans-
forms including the FFT. However, only small kernels (max size:
64-point FFT) are investigated and the overall scalability of their
solution to larger vector widths and larger kernels is not addressed.
The difficulties of optimizing for a wide range of SIMD vector ar-
chitectures are well explored in [27, 16].

3. Vectorization Efficiency and Motivation
Vectorization overhead impacts even simple kernels. Consider

the case of the element-wise product of two arrays each contain-
ing four complex element in interleaved form (alternating real and
imaginary parts). On a traditional scalar processor, this kernel re-
quires 24 floating point operations: 4 multiplications, 1 addition
and 1 subtraction per complex product. Figure 1 shows the dataflow
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Figure 2: The same computation as in Fig. 1 performed on LRB using again a vector width of size four.

of a vectorized version of this kernel on Intel’s SSE SIMD architec-
ture with a vector width of four (4-way). The six vectorized arith-
metic instructions (yellow symbols) in this figure are straightfor-
ward but the de- and re-interleaving of real and imaginary elements
is less obvious and requires six shuffle instructions as overhead.

We quantify the vectorization efficiency by calculating the ratio
of total floating point operations in the scalar kernel to the total
number of vector instructions in the vectorized kernel. In Fig. 1 the
efficiency is 24/(6 + 6) = 2. An ideal vectorization (not possible in
this case) would yield 24/6 = 4 = vector length as efficiency.

Vectorization efficiency is a good first-order indicator of perfor-
mance and enables the study of different vector architectures even
if the architecture is not yet available.

Figure 2 gives a first idea of the difficulties in vectorization. It
shows the same kernel as in Fig. 1 this time 4-way vectorized for
LRB (only 4 out of the 16 slots in the vector register are shown
for simplicity; the labels 1–3 are explained later). The data flow is
non-intuitive but now has an overhead of only 4 shuffles and thus
an improved efficiency of 24/(6 + 4) = 2.4.

4. AVX and Larrabee
We give a brief overview of Intel’s AVX instruction set and a

more in-depth view of LRB, with focus on the Larrabee new in-
structions (LRBni).

4.1 Advanced Vector Extension
Intel’s latest extension to the SSE family is the Advanced Vector

Extension (AVX) [2]. It extends the 128-bit SSE register into 256-
bit AVX registers, that consist of two 128-bit lanes. An AVX lane is
an extension of SSE4.2 functionality, including fused multiply-add
instructions and three-operand instructions. AVX operates most ef-
ficiently when the same operations are performed on both lanes.
Cross-lane operations are limited and expensive. AVX defines 4-
way 64-bit double precision, 8-way 32-bit single precision, and in-
teger operations.

AVX shuffle instructions. AVX essentially implements SSE’s
128-bit shuffle operation for both lanes, with some extensions to
support parameter vectors. In addition it defines one cross-lane
shuffle operation. This leads to higher shuffle-overhead since many
operations now require both cross-lane and intra-lane shuffling. In
Listing 4.1 we show the intrinsic function prototypes of 4-way
double and 8-way single AVX shuffle instructions. The parame-
ter space of AVX shuffle instructions is much larger compared to
2-way and 4-way SSE instructions.
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Figure 3: An expanded view of the LRB swizzle and writemask
features used to sign-change and reorder vectors for complex
multiplication. The left and right image corresponds to labels 1
and 2 in Figure 2, respectively. Each is a single LRB instruction.

Listing 1: AVX shuffle instructions.
__m256d _mm256_unpacklo_pd(__m256d a, __m256d b);
__m256d _mm256_unpackhi_pd(__m256d a, __m256d b);
__m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int select);
__m256d _mm256_permute2_pd(__m256d a, __m256d b, __m256i control, int imm);
__m256d _mm256_permute2f128_pd(__m256d a, __m256d b, int control);
__m256d _mm256_permute_pd(__m256d a, int control);

__m256 _mm256_unpacklo_ps(__m256 a, __m256 b);
__m256 _mm256_unpackhi_ps(__m256 a, __m256 b);
__m256 _mm256_permute2f128_ps(__m256 a, __m256 b, int control);
__m256 _mm256_permute2_ps(__m256 a, __m256 b, __m256i control, int imm);
__m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int select);
__m256 _mm256_permute_ps(__m256 a, int control);
__m256 _mm256_permutevar_ps(__m256 a, __m256i control);

4.2 Larrabee
Intel’s LRB architecture can be described as a chip-level mul-

tiprocessor containing a large number of cache-coherent, in-order
x86 cores. LRB leverages legacy code through compatibility with
the standard Intel x86 32/64 scalar instruction set but features a
novel and powerful SIMD vector instruction set known as LRBni
(Larrabee New Instructions). We restrict our discussion of LRB to
the architectural features most relevant to vectorization and refer
the reader to [31, 24] for a more comprehensive discussion.

The LRB core is a dual-pipeline architecture that shares many
similarities with the well known P5 Pentium architecture. LRB’s
vector unit and LRBni, however represent a significant departure
from previous commodity vector architectures. To elaborate, we
return to Figure 2. Label 1 shows data reordering on the second
vector input. Label 2 shows data reordering and a sign-change of
the same input vector. Label 3 shows data reordering being per-
formed on the remaining input vector. This reordering operation
is folded into the subsequent computation while Labels 1 and 2
require one instruction each. All told, there are 4 reordering in-
structions in this kernel compared to 6 reordering instructions in
the SSE kernel shown in Figure 1.

LRBni ISA. We now briefly discuss the LRBni vector exten-
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Figure 4: The LRBni vector extension.

sion. The 512-bit registers are grouped into 4 128-bit lanes. The
512-bit registers can hold either 8 double-precision numbers or 16
single-precision numbers. The 16-way vector can be interpreted as
4-by-4 matrix. Instructions (see Figure 3) contain multiple parts: 1)
Source operands can be reordered (within lanes) before being used.
2) All standard arithmetic operations are supported (including ad-
dition, subtraction, multiplication, fused multiply-add and add-sub)
and performed in parallel on all vector slots. 3) A selector describes
which of the result vector slots are actually written into the desti-
nation, and which results are discarded. In addition, step 1 is ex-
posed as instructions as well. LRBni instructions are complicated
with may parameters, and the intrinsic interface decouples LRBni
instructions into multiple intrinsics to make programming manage-
able. We show examples of LRBni instructions in Listing 4.2 Be-
low we discuss some of the LRBni instructions important for this
paper in more detail.

Swizzles. Returning to Figure 3 we note that the reduction in re-
ordering instructions is achievable due to the dedicated reorder HW
in LRB’s vector unit. This HW provides for a limited set of non-
destructive shuffles, known as swizzles, which can be performed on
one in-register vector operand per vector instruction. The swizzles
used to implement Labels 1 and 2 in Figure 2 are shown in Figure 3.
Label 1’s implementation is shown on the left and uses a binary-OR
taking three vector inputs; vector instructions in LRB are ternary.
The first and third operands are sourced from the same register.
We binary-OR the swizzled third operand with the zero vector and
merge the result with the first vector operand in accordance with a
writemask. This writemask is stored in one of the mask registers
and is an optional argument to most vector instructions. It dictates
which elements in the third vector operand are overwritten.

Listing 2: Implementation of complex multiplication using
LRB intrinsics
// v0, v1: input vectors of interleaved complex floats
__m512 zero = _mm512_setzero();
__m512 s0 = _mm512_swizzle_r32(v0, _MM_SWIZ_REG_CDAB);
__m512 reals = _mm512_mask_or_pi(v0, 0xAAAA, zero, s0);
__m512 imags = _mm512_mask_sub_ps(v0, 0x5555, zero, s0);
__m512 t0 = _mm512_mul_ps(reals, v1);
__m512 s1 = _mm512_swizzle_r32(v1, _MM_SWIZ_REG_CDAB);
__m512 res = _mm512_madd231_ps(t0, imags, s1);

The computation required for Label 2 is similar with the use

Figure 5: The problem of mapping basic permutations to vec-
tor shuffle instructions

of a subtraction instruction to affect a sign-change and a different
writemask. For completeness, we show the C code with LRB in-
trinsics that implements the entire kernel in Listing 4.2. This code
listing also shows the use of one of LRB’s many fused multiply-
add (FMA) instructions. The combination of FMAs and swizzles
enables LRB’s complex multiplication kernel to attain a vectoriza-
tion efficiency of 3 for the simplified 4-way case; the 16-way case
has the same relative efficiency at 12 floating-point operations/vec-
tor instruction.

Broadcasts, gathers, and memory operations. LRB’s vector
unit also features extensive support for L1-cache-to-register opera-
tions. Of particular interest is the replicate hardware which enables
efficient scalar broadcasts from memory and can be used with vir-
tually all vector instructions. Scatter/gather functionality exists in
the form of two instructions which take a base address and a vec-
tor of offsets. Another useful pair of instructions are those which
can pack/unpack data and handle unaligned memory accesses. For
LRB’s remaining non-reordering vector instructions we refer the
reader to [25].

LRBni shuffle operations. Finally, there is the unary LRB shuf-
fle, depicted at the bottom of Figure 4. Because the reorder hard-
ware only supports a limited set of shuffles we must rely on the ded-
icated shuffle instruction for more general, arbitrary reorderings.
As stated before, shuffle instructions are generally the most expen-
sive vector instructions and do not particularly scale well; encoding
a fully general unary shuffle for a 16-way architecture requires 64
bits. If this 64 bit value is stored directly in the shuffle instruction it
complicates the instruction decoders. Conversely, storing this value
in a separate, scalar register complicates the datapath.

5. Superoptimizer for Data Permutations
In this section we explain how we automatically derive short (ef-

ficient) instruction sequences to implement important basic data
reorganizations (permutations). The data to be permuted fits into
a few vector registers and the data permutations we consider have
a regular structure. Two important examples are 1) the interleav-
ing/deinterleaving of two vectors of complex numbers into/from
one vector of real parts and one vector of imaginary parts, and 2)
the in-register transposition of a square matrix whose number of
rows is the vector length. Both can be viewed as transpositions of
a small matrix. The motivation for considering these permutations
is from [6], which shows that these are the only in-register shuffles
needed to implement FFTs. The same permutations are also impor-
tant in numerical linear algebra kernels and many other functions.

Fundamentally, we are faced with the challenge of mapping the
basic permutations needed to a class of hardware reordering in-
structions that we refer to collectively as shuffles (see Figure 5).



Figure 6: The basic permutation (perfect shuffle) that inter-
leaves two 4-way vectors represented as a product of two binary
matrices and two input vectors

Our goal is to generate efficient sequences of these reordering in-
structions in order to minimize the vectorization overhead. Effi-
cient sequences are difficult to generate due to the complexity of
shuffles and other reordering instructions in wide-vector architec-
tures. To overcome these challenges, we developed an infrastruc-
ture to automate the generation of efficient reordering sequences.

Problem statement. Given a vector ISA and its shuffle oper-
ations and a transposition of a small matrix that is held in a few
vector registers. We aim to generate a short instruction sequence
that implements this matrix transposition with the minimal number
of in-register shuffles.

Approach. We find the shortest instruction sequence that imple-
ments the required matrix transposition by 1) modeling instructions
as binary matrices, 2) instruction sequences as products of binary
matrices, 3) and transpositions as stride permutation matrices [20,
11]. Checking that an instruction sequence implements a certain
transposition then is equivalent of checking that a product of matri-
ces evaluates to the required stride permutation matrix. Based on
this observation we build a superoptimizer based on matrix factor-
ization to find the shortest instruction sequence that implements the
required permutation.

5.1 Implementing the Superoptimizer
Formalization. The key insight to our approach is that we can

represent permutations and the shuffle instructions that implement
them as binary matrices [11]. This can be seen in Figure 6, which
shows the permutation that reinterleaves a real vector and an imag-
inary vector into a vector of complex numbers as a product of two
binary matrices operating on two concatenated input vectors of size
4.

This particular factorization of the permutation maps to two dif-
ferent sets of instructions on Intel SSE each with different per-
formance characteristics. With the binary matrix representation
in hand, we can formalize the generation of shuffle sequences as
equivalent to finding a binary matrix factorization (BMF) of a given
permutation matrix, Pm where each factor, Fi is a valid shuffle in-
struction in the vector instruction set architecture (ISA). For effi-
cient shuffle sequences we generally want the least expensive se-
quence for some per-instruction cost function cost:

minimize
∑n

i=0 cost(Fi)

subject to Pm = F0F1 · · ·Fn−1 ∧ F0, . . . , Fn−1 ∈ ISA

Binary matrix factorization (BMF). While BMF is a conve-
nient formalization it is known to be NP-hard [33]. The problem is
further complicated by our need for exact factorizations and factors
with specific matrix dimensions (2ν x 2ν for a vector width ν); ex-
isting solvers generally find approximate factorizations with factors
of arbitrary dimension [32]. We therefore elected to go in the other

direction by generating sequences of binary matrices where each
binary matrix corresponds to a particular configuration of a par-
ticular shuffle instruction. The code implementing this description
is shown in Listing 3. We then evaluate the sequence by matrix
multiplying the sequence elements and comparing the Hamming
distance to the desired base permutation matrix.

Super-optimization. In a sense, we are performing a kind of
super-optimization on a limited number of complex shuffle instruc-
tions [26]. While conceptually straightforward, this approach, like
general super-optimization, has limitations. One basic problem is
that we have no indication of the minimal sequence size required
to implement a particular base permutation. Furthermore, even
though the matrices in the candidate sequences are all derived from
a small set of shuffle instructions, we are still left with a very large
search space; there are four billion variants of the unary LRB shuf-
fle alone. More concretely, the code shown in Listing 3 produces
kn different sequences of shuffle instructions for a sequence length
of n and vector ISA with k shuffle instructions. Considering the
number of variants per shuffle instruction (or the number of dif-
ferent matrices each shuffle instruction represents) gives us a total
number of different instruction sequences of:

kn−1∑
i=0

(
n∏

j=0

|Si,j |

)
where Si,j is the j th shuffle instruction in the ith instruction se-
quence and |Si,j | is the number of shuffle variants.

Guided search. Our solution for searching this space efficiently
is a vector-instruction aware, heuristic-guided search system that
can be integrated with the program generator Spiral, which is itself
already a form of expert system.

Sequence length estimation. An example heuristic uses the
vector width of the architecture, combined with a representation of
the intrinsic interface of the most general shuffle instruction in the
vector ISA to help determine a likely lower bound on the minimum
number of shuffle instructions required to implement a particular
base permutation. For example, a fully general unary shuffle can
be used to implement the reinterleaving of an vector of real and
imaginary parts to a complex vector in about four instructions.

Sequence culling. Other heuristics allow us to cull individual
shuffle configurations from consideration (e.g. the identity shuf-
fle) as well as instruction sequences (e.g. interleaving followed by
immediate de-interleaving). The system also requires a generator
program for each prospective shuffle instruction. The generator
produces a binary matrix for a given configuration of the shuffle.

Listing 3: Building Sequences (Schedules) of Shuffle Instruc-
tions
// idx: index in the current schedule, numInstrs: # of shuf instrs in ISA
// schedLen: size of an instruction sequence, sched: the existing schedule
// instrs: array of shuffle instructions
void build_schedules(int idx,int numInstrs,int schedLen,schedule_t* sched){

for(int i=0;i<numInstrs;++i){
schedule_t nSched = new schedule_t(schedLen);

// append the existing schedule
nSched.add(sched);
// add the ith instruction to the schedule
nSched.add(idx,instrs[i]);
if(idx+1 == schedLen){
// finished creating the schedule
// enqueue the schedule for processing
threadQueue.enqueue(nSched);

}else{
// recursively build the remaining schedules
build_schedules(idx+1,numInstrs,schedLen,nSched);

}
}

}

µ-op decomposition. We also decompose complex instructions
into multiple stages; encoding each stage as a separate shuffle in-
struction to provide much finer grain resolution for the pattern



Figure 7: A decomposition of the LRB shuffle instruction into
µ-ops

Figure 8: µ-op fusion: this particular element shuffle and
merge can be implemented by one swizzle instruction

matching and rewriting that we employ to cull candidates and per-
form other optimizations. We show an example of this decompo-
sition for the LRB shuffle in Figure 7 where we refer to individual
stages as µ-ops. The µ-ops depicted in the figure are generally suf-
ficient to describe most reordering operations. Ideally, we hope to
subsume a sequence of these µ-ops with a less expensive instruc-
tion, performing in effect a type of strength reduction by “µ-op
fusion.” Figure 8 shows two µ-ops originating from a LRB shuffle
which can be performed by a less expensive swizzle.
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Figure 9: Partitioning of a stride permutation matrix (reinter-
leaving a real and an imaginary vector into a complex vector)
for a 4-way vector architecture

Base permutation partitioning. Another technique used to ac-
celerate search involves partitioning a base permutation matrix into
a sequence of “hollow” matrices. These matrices have the same
dimensions and initial contents as the source base permutation ma-
trix. However, certain rows are converted into “don’t care” rows;
an example is shown in Figure 9.

Searches are then performed on a set of these “hollow” matrices
in parallel using reduced length instruction sequences. The hope
is that the shorter instruction sequences found for each “hollow”
matrix can be inexpensively combined in a later pass to produce
the full base permutation matrix. Because these shorter instruc-
tion sequences potentially contain many redundancies we employ
a prefix tree to filter out common sub-sequences. The search mech-
anism is fully parallelized and can run on shared-memory and clus-
ter machines and relies on a hand-tuned binary multiplication ker-
nel shown in Listing 4. We describe its performance and efficacy
in generating vectorized code presently.
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Figure 10: Number of additions and multiplications for Spiral-
generated FFTs

Listing 4: Binary matrix multiplication kernel optimized for
permutation matrices
// c: output binary matrices, a,b: input binary matrices, all matrices
// are represented as an array of bit-vectors with n as the vector width
void binmat_mult(unsigned int* a, unsigned int* b, unsigned int* c){
unsigned int mask = exp2(n-1);
for(int j=0;j<n;++j){
unsigned int bb = b[j];
unsigned int w = 0;
unsigned int m = mask;
#pragma unroll(n)
for(int i=0;i<n;++i) {
unsigned int v = a[i] & bb; bool f = !(v & (v - 1)) && v;
w = (w & ~m) | (-f & m); m >>= 1;

}
c[j] = w;

}
}

6. Experimental Results
In this section we evaluate both the performance of the super-

optimizer and the quality of the generated code. The latter is as-
sessed by using the generated permutations inside Spiral-generated
FFT code, whose efficiency and performance is then evaluated. For
LRB we use instruction counts since no hardware is available. For
compilation, we used Intel icc version 12.0.2 on Linux with the -O3
optimization flag as well as unrolling and alignment pragmas.

Generated FFTs. We experimentally evaluate our gener-
ator with 1D complex FFTs, both with 2-power sizes n =
64, . . . , 32768 as well as for kernel sizes n = 2, 3, . . . , 32. To
do this we connected our generator with the program generation
system Spiral effectively inserting the generated permutations into
the generated FFT code. On LRB, Spiral’s feedback-driven search
uses the number of vector instructions instead of runtime as cost
function. All FFTs used are O(n log(n)) algorithms. For small
sizes we also perform an experiment with direct O(n2) implemen-
tation.

First, we evaluate the impact of vectorization on the mathemati-
cal operations count (counting additions and multiplication) of the
generated FFTs. Vectorization introduces overhead in the form of
superfluous multiplications by 1 and superfluous additions with 0
due to data packing in registers. A degenerate strategy for min-
imizing this overhead could generate kernels with higher opera-
tions count and simpler structure. Figure 10 shows that this is not
the approach with Spiral-generated FFTs. The y-axis shows the
number of mathematical additions and multiplications of Spiral-
generated vectorized code divided by n log2 n where n is the input
size shown on the x-axis. As upper bound we show the radix-2
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Cooley-Tukey FFT, which requires 5n log2(n) operations. This
number is usually (and also in this paper) used for FFT perfor-
mance comparisons in Gflop/s, thus slightly overestimating the per-
formance. As lower bound we show the split-radix FFT which re-
quires 4n log2(n)− 6n+ 8 many operations. The plot shows that
Spiral-generated vector code on all architectures is close to the lat-
ter.

Vectorization efficiency. We now examine the vectorization ef-
ficiency, defined in Section 3, of the Spiral-generated vectorized
FFT. Ideally, the vectorization efficiency should approach the ar-
chitecture’s vector width. However, due to the required shuffles,
this is not achievable. Figure 11 shows that across vector archi-
tectures and lengths, we achieve an efficiency of up to about 80%
of the vector length. For AVX and LRB, this is mainly due to the
superoptimizer presented in this paper.

We also note that AVX ramps up faster due to its more general,
binary shuffle but LRB eventually achieves the same relative effi-
ciency.

Next we investigate the trade-off between fastO(n log2 n) algo-
rithms and direct O(n2) computations for small kernel sizes. For
these sizes the shuffles required by the fast algorithms can become
prohibitive while the regular, FMA-friendly structure of the matrix-
vector product allows for high efficiency. Figure 12 shows that
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indeed up to a size of about n = 20, the direct computation is
preferable, even though the mathematical operations count (count-
ing only additions and multiplications) is inferior. The reason is
in LRB’s dedicated replicate HW, which enables efficient scalar
broadcasts and FMA instructions which are well-suited for a direct
computation.

Evaluation against FFT libraries. We cannot evaluate our
FFT implementations against state-of-the-art third-party FFT im-
plementations using the vectorization efficiency metric. The Intel
Integrated Performance Primitives (IPP) [18] and Math Kernel Li-
brary (MKL) [19] would be the ideal base line for comparisons,
but are only distributed as binaries; thus, instruction counts are not
available. The recent (Jan 2011) release of hardware implementing
the AVX ISA allows for a runtime comparison. Figures 13 and 14
show a runtime performance comparison of 4-way (double preci-
sion) and 8-way (single precision) AVX vectorized FFTs from Intel
IPP 7.0 with those generated by Spiral on a 3.3 GHz Intel Core i5-
2500. Spiral’s AVX performance compares well with IPP 7.0 on the
full range of DFT sizes. Note, that this early platform implement-
ing the AVX ISA does not feature support for FMAs. FFTW [14]
is available in source code and thus amenable to instruction statis-
tics, but at this point only supports 2-way double precision 4-way
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single-precision SSE on Intel architectures. At the time of this writ-
ing there is no AVX or LRBni support.

Comparison to Intel’s compiler vectorization. Intel’s C/C++
compiler (icc) 12.0.1 supports AVX as a vectorization target. How-
ever, the auto-vectorizer does not utilize the AVX fused multiply-
add instructions. We instruct the Intel C compiler to generate AVX
assembly code from scalar (ANSI C with the necessary pragmas)
and count the AVX arithmetic and reorder instructions, taking loop
trips into account. No comparison for LRBni is possible. The In-
tel compiler performs well and achieves a vectorization efficiency
of about 5.6 on 8-way single-precision AVX, thus achieving about
72% of our vectorization efficiency. Note that this high efficiency is
in large parts due to Spiral’s search, which in effect finds the code
with the best structure for the compiler to succeed. Also the use
of vectorization pragmas and buffer alignment declarations con-
tributes.

Figures 13 and 14 include the performance of Spiral-generated
scalar code, autovectorized by the compiler as described. For the 8-
way and 4-way cases, Spiral vectorized DFTs were 30% and 40%
faster, respectively, than icc compiled DFTs.

Vectorization efficiency as a performance guide. Spiral’s con-
ventional search for the best performing DFTs relies heavily on
runtime performance feedback as a guiding metric. We have argued
that in the absence of runtime performance feedback, vectorization
efficiency can serve as substitute metric for guiding search. Figures

System Million instruction sequences/sec

2.6 GHz Core i7 2.1
3.0 GHz Core 2 Quad 1.3
2.8 GHz Opteron 2200 0.8

Table 1: Search throughput on three x86-based CPUs

15 and 16 compare the performance of Spiral generated, AVX vec-
torized DFTs produced using two different metrics to guide search:
runtime performance feedback and vectorization efficiency. In the
8-way case, the vectorization efficiency guided code approaches
to within 7.4% on average of the performance of the code gen-
erated using runtime feedback. Similarly, in the 4-way case, the
performance difference between the two generation methods is 8%
on average. The relatively small performance disparity for smaller
sizes is attributable to the delicate balance of arithmetic instruc-
tions and permutations required to handle functional unit latencies
and port conflicts. For larger sizes, vectorization efficiency has dif-
ficulty achieving the right balance between loading precomputed
constants and calculating the constants on the fly.

Permutation search results. Table 1 summarizes the through-
put of our search mechanism on three different architectures. On
average, finding a base permutation matrix for LRB required about
two hours, roughly the equivalent of evaluating 14 billion instruc-
tion sequences of length six on the Core i7, which took about 2
hours. To put this figure in perspective, when expanded to µ-ops
an instruction sequence of length six is roughly 16 µ-ops. An ex-
haustive search would need to evaluate more than 51216 different
instruction sequences requiring about 1029 years on a Core i7. The
shortest LRB instruction sequences discovered were for interleav-
ing and deinterleaving two vectors of complex numbers, both of
which require six instructions each: four shuffles and two swizzles.
In contrast, both of these operations can be done in two instructions
each on SSE. These sequence lengths compare favorably with the
heuristic described above which estimated four shuffle instructions
based on a fully general unary shuffle.

7. Conclusion
Near-term designs in the commodity architecture space show

a clear trend towards more sophisticated SIMD vector instruction
sets featuring ever wider vectors. Effectively vectorizing code for
such architectures is a major challenge due to highly complex, non-
intuitive and expensive vector reordering instructions. In this pa-
per we presented a superoptimizer for data reorganization (per-
mutations) that are important building blocks in many computa-
tions in linear algebra and signal processing. We show that—using
enough resources—highly efficient automatic vectorization is pos-
sible for the the rather complex recently announced SIMD vector
extensions: Our superoptimizer evaluated 14 billion instruction se-
quences in about 2 hours to find an efficient 6-instruction imple-
mentation of the core data reorganization. Using our optimizer we
generated a library of building blocks required for implementing
FFTs on AVX and Larrabee. We connected our optimizer to the
program generation system Spiral and used it to generate efficient
FFT implementations for AVX and Larrabee’s LRBni vector in-
structions achieving a vectorization efficiency of up to 80% of the
vector length across vector architectures.
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