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Cyber-physical systems (CPS) ranging from
critical infrastructures such as power plants, to
modern (semi) autonomous vehicles are systems
that use software to control physical processes.
CPS are made up of many different computa-
tional components. Each component runs its
own piece of software that implements its con-
trol algorithms, based on its model of the envi-
ronment. Every component then interacts with
other components through the signals and values
it sends out. Collectively, these components, and
the code they run, drives the complex behaviors
modern society have come to expect and rely on.
Due to these intricate interactions between com-
ponents, managing the hundreds to millions lines
of software to ensure that the system, as a whole,
performs as desired can be often unwielding.

In this article, an approach towards taming
part of the complexity is described. The ap-
proach utilizes intrinsic multi-modal redundan-
cies to detect brewing problems, provides formal
guarantees for control algorithms, and automates
the software production to implement these algo-
rithmic ideas with guaranteed correctness.

Specifically, the approach addresses the prob-
lem from three directions: 1) The desired behav-
ior of the system and assumptions about the en-
vironment is described formally (in differential
dynamic logic), and proven, over all valid execu-
tions, to perform correctly based on the formal-
ized assumptions. 2) High performance monitor
software that checks that the environment com-
ply with the specified assumptions, and a proof

that its implementation is a faithful representa-
tion of the mathematical specifications, are au-
tomatically synthesized from the differential dy-
namic logic model to reduce and even eliminate
human coding error. 3) Side channel information
such statistical noises are fused with traditional
sensor inputs such as Global Positioning System
(GPS), based on fundamental analytical redun-
dancy, so as to establish that the inputs to the
system (i.e. sensor readings) do not contradict
the known physics of the system.

This approach has been demonstrated on both
a remote controlled unmanned research ground
robot, called the Landshark, and on an American-
built car. In these demonstrations, the combina-
tion of formal methods for hybrid systems, au-
tomatic and provably correct code generation,
and side-channel redundancy has been shown to
detect and defend against GPS spoofing (ma-
nipulating of the GPS signal to make the vic-
tim believe to be at a different position), while
protecting the car and robot from being driven
into known obstacles. More importantly, these
concepts are applicable in the CPS arena be-
yond unmanned ground vehicles or modern cars.
Other domains for which the approach have
shown applicability includes system components
like pumps in power plants, and control of un-
manned aerial vehicles.

Overview
Two formal systems are combined to provide
end-to-end correctness guarantees from the con-
trol algorithm/physical model level down to the
deployed implementation of the control algo-
rithm. One or both systems formalize control
approaches or self-consistency checks to ensure
system safety. In either case, engineers then syn-
thesize the final deployable software from a high
level specification, and have guarantees that the
synthesized software is correct and efficient.

The top level system is KeYmaera X [1], a
theorem prover for differential dynamic logic [2].
With KeYmaera X it is possible to prove that a
family of controllers, applied to a cyber-physical
system with a given physical model will behave
in a certain way. An example of a safety property
that KeYmaera X can prove is that a robot with
a controller based on the dynamic window control
approach [3] will not hit an obstacle or another
robot [4] (which is called passive safety). The

1



Carnegie Mellon Carnegie Mellon Carnegie Mellon 

HA SPIRAL 
Code Synthesis 

KeYmaera X 
Hybrid Theorem 

Prover 

performance 

QED. 

QED. 

Coq  
Proof Assistant 

Physics model 

KeYmaera X 
Hybrid System  

Theorem Prover  
Monitor equation 

Sφnx 
KeYmaera X to HA Spiral 

HA SPIRAL formal 
compilation 

HA SPIRAL backend 
compilation 

Rewrite trace 

C compiler 

Rewrite trace 
Coq proof 

Rewrite trace Rewrite trace 
Coq proof 

Model validation 

Rewrite trace Translation 
validation 

Rewrite trace Translation 
validation 

Figure 1: Overview of our end-to-end system (left) and the end-to-end proof argument (right).

dynamic window approach is suitable for robots
driving circular trajectories. It computes admis-
sible velocities that avoid collisions with obsta-
cles, and from those it chooses a velocity that
can be realized by the robot within a short time
frame (the dynamic window) and bring it closer
to some goal.

After verification, using a technique called
ModelPlex [5], KeYmaera X synthesizes a prov-
ably correct mathematical condition (a monitor)
with the following property. This generated mon-
itor checks, at runtime, that the observed en-
vironment fits the verified model environment.
When the observed behavior fits to the verified
model as validated by the monitor execution at
runtime, then the system execution is safe. How-
ever, when the monitor is violated, the system
may have evolved beyond the model assumptions,
which means that the system is potentially un-
safe and will enter failsafe mode. This is similar
to Simplex monitors [6] detecting when to switch
between controllers.

Having derived a monitor condition that in-
forms when the observed environment no longer
fits to the assumed model, the remaining prob-
lem is to translate this monitoring expression into
an efficient piece of software that performs the
check at runtime. The SPIRAL system [7, 8, 9]
is used to synthesize a software implementation
from the monitoring expression. The core of SPI-
RAL is a rewriting system that manipulates SPI-

RAL’s HCOL language (hybrid control opera-
tor language) into an equivalent expression that
can be translated into code. Key requirements
are that every HCOL expression has a mathe-
matical interpretation, and each transformation
performed on the HCOL expression must return
a mathematically equivalent HCOL expression.
The requirements, together, guarantee that the
final code (when executed over the real numbers)
would be a mathematically equivalent expression
to the monitoring expression. Next, SPIRAL
uses interval arithmetic [10] to implement this
final code using floating point numbers available
on current architectures. SPIRAL utilizes perfor-
mance enhancing computer architecture features
like SIMD vector instructions as well as aggres-
sive compiler techniques (all of which are cast as
mathematical rewrite rules) to produce highly ef-
ficient code.

Another component of the approach is to uti-
lize statistical and analytical redundancy between
multiple sensors that measure different quantities
to establish that the current state of the system
as understood by the controllers is self consis-
tent, i.e., there is no intrinsic inconsistency in the
measurements given the accuracy of the sensors.
Statistical tests and analytical redundancy estab-
lish that location estimated through GPS and
through a wheel encoder do not disagree more
than the intrinsic inaccuracy of the respective
sensors. This makes it possible to detect GPS
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spoofing. Other analytical redundancy meth-
ods for protecting againt compromised sensors
include the estimation of vehicle speed from mul-
tiple sound channels obtained with microphones
placed strategically on the car [11], estimation of
vehicle altitude from correlating barometric pres-
sure with GPS [12], and determining the posture
of a robot via its camera view. All these meth-
ods protect against compromised sensors since
they correlate measurements that have a compli-
cated analytical relationship that cannot be eas-
ily maintained by an attacker.

This approach has been demonstrated on a
number of manned and unmanned ground and
air vehicles. The dynamic window monitor was
deployed as an end-to-end example produced by
KeYmaera X and SPIRAL. It was used both
on the Landshark and the American-built car to
prevent a malicious operator from crashing the
vehicle into an obstacle. In addition, resilience
to GPS spoofing while the monitor was running
was demonstrated, by utilizing statistical and set
based inconsistency detectors. Further the de-
tection of replay attacks was demonstrated us-
ing a statistical test. In all these demonstration
the critical code pieces were synthesized with the
SPIRAL system. In addition very accurate speed
estimation solely from vehicle sound was demon-
strated. Finally, a quadcopter height controller
with correctness guarantees was synthesized.

Proving Controllers
Correct–And Catching Them

If Not
Due to their impact on the real world, cyber-
physical systems need to be safe. That poses a
nontrivial but important challenge because it is
not easy to get the control decisions exactly right
to maintain safety of the physical system and its
response through actuation, especially in light of
the interaction with other agents in the environ-
ment. Formal verification has been identified as a
powerful analysis technique to establish correct-
ness guarantees about the behavior of the design
or find issues as early as possible in the design
process [13].

The development begins with a model of the
system dynamics as a hybrid system [14, 15, 16,
2], which are mathematical models that feature
both discrete and continuous dynamics. This

flexible combination of dynamics is important for
understanding systems with computerized or em-
bedded controllers for physical systems since the
latter are usually modeled continuously while the
former are discrete. The development also be-
gins with a precise formal definition of the safety
property to be guaranteed.

The approach uses differential dynamic logic
(dL [17, 18, 19, 2, 20, 21]) as the language in
which both hybrid systems model and desired
correctness properties can be specified unambigu-
ously. Differential dynamic logic also provides
the systematic way of proving that the hybrid
system satisfies such correctness properties and is
implemented in the theorem prover KeYmaera X
[1]. Once the hybrid systems model is proved to
satisfy its desired correctness properties in KeY-
maera X, the ModelPlex tactic [5], which is im-
plemented in KeYmaera X, synthesizes provably
correct monitor conditions that check compliance
of the system with the verified model so that
safety transfers to the real system implementa-
tion.

Model. To illustrate the principles in action,
consider a ground robot that has to avoid colli-
sion with obstacles [4]. Let us consider a sim-
ple setting where the robot drives on a flat, even
surface. It is equipped with a distance measure-
ment sensor, such as radar or Lidar, so that the
robot is able to detect drivable regions. Every-
thing else is considered an obstacle (for example,
walls or other robots), meaning that the robot is
able to measure the distance to obstacles. The
robot does so periodically according to its sam-
pling period (for example, every 20 ms) when it
decides on steering, acceleration and braking ac-
cording. The decisions on acceleration and steer-
ing are input into actuators, which turn these into
physical motion that is followed until the robot
controller runs the next time (for example, 20 ms
later). During that time, the decisions cannot be
changed. That way, the robot can stitch together
its trajectory by following circular arcs of vary-
ing radius, as in the dynamic window approach.
The robot can avoid collisions with obstacles by
stopping or by choosing appropriate values for
steering that let it drive around obstacles.

In principle, obstacles could do the same. How-
ever, the number of constraints put on how ob-
stacles will move should be kept low, so that the
model fits many different kinds of motion. Hence,
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the model assumes a maximum velocity and oth-
erwise allows any kind of motion (for example,
walls stay put, while moving obstacles could even
make sudden orientation changes and jumps in
speed).

The model in equations (1)–(5) describes the
decisions of obstacles obst, the control choices of
the robot robot, and the entailed physical behav-
ior dyn. It models the dynamic window approach
[3] for collision avoidance and is described in de-
tail in [4].

The model is shown in Fig. 2. The modeling
idiom t := 0; dyn, t′ = 1 & t ≤ ε used in (1)
describes the sampling period of the controller:
the clock t with constant slope t′ = 1, together
with the condition t ≤ ε, ensures that at most
time ε passes between controller runs.

The obstacle model obst is very liberal. It
only guarantees that obstacles will not exceed
a maximum speed V . Otherwise, any behav-
ior is allowed by choosing velocity vo := ∗ non-
deterministically, which even includes sudden ori-
entation changes and jumps in speed.

The robot has three control choices. First, if
the condition safe is satisfied it can choose its ac-
celeration ar and a new curve described by the
rotational velocity ωr and the curve radius rc.
Of course, not all choices are admissible, so the
control branch ends in a test that allows only
accelerations in the physical acceleration limits
−b ≤ ar ≤ A between maximum braking −b and
maximum acceleration A. The condition further
ensures that the robot is not spinning rc > 0 and
that the curve preserves planar rigid body mo-
tion: the curve preserves the robot’s longitudinal
speed ωrrc = vr. Second, the robot can stay
stopped ar := 0 without spinning wr := 0, if it
is stopped already. Finally, the robot can choose
to just hit the emergency brakes ar := −b on its
current curve unconditionally at any time.

These control choices entail physical behavior
as described in dyn: the robot’s position changes
according to its speed and orientation (p′r =
vrdr), with speed in turn determined by accel-
eration (vr = ar), while orientation follows along
the chosen curve (ω′r = ar

rc
and d′r = −ωrd

⊥
r ).

The obstacle’s position is modeled in a similar
fashion. Note that v′r = ar may result in nega-
tive speeds vr < 0 upon braking ar < 0, so the
condition vr ≥ 0 ensures that hitting the brakes
does not make the robot drive backwards.

Safety Property. Next, a safety property is
needed in order to analyze the model dw from (1)
formally. Intuitively, with only stationary obsta-
cles around, at all times, everything the robot
ever does has to result in positions different from
obstacle positions, as captured in pr 6= po. In
the presence of moving obstacles, however, this
condition needs to be relaxed, since guarantees
are only possible about the robot at hand, not
about the behavior of obstacles, as elaborated in
[4, 22]. Hence, the model will guarantee passive
safety vr 6= 0→ pr 6= po, which means that there
will be no collisions while the robot is driving. So,
if a collision occurs at all, it is because a moving
obstacle ran into the robot. Or if all agents are
safe, there will be no collisions.

Eq. (6) below defines the requirements on the
robot in a dL formula of the form initial →
[model] safety. This means that, when the system
starts in any initial state meeting the conditions
initial, then all runs of model will end up with
the safety condition safety being satisfied.

vr = 0 ∧A ≥ 0 ∧ b > 0 ∧ ε > 0 ∧ V ≥ 0

→ [dw] (vr 6= 0→ pr 6= po) (6)

The dL formula in (6) defines the starting con-
dition initial as follows: the robot is stopped ini-
tially vr = 0, and not malfunctioning, which in-
cludes a proper engine A ≥ 0, functional brakes
b > 0, a sampling period ε > 0, and it assumes
that obstacles will not exceed V ≥ 0. When
started under these conditions, all executions of
the model dw (denoted by the box operator [dw]
in dL) guarantee passive safety (vr 6= 0 → pr 6=
po). The logical formula (6) can be analyzed in
the hybrid system theorem prover KeYmaera X.

Verification. KeYmaera X applies sound ax-
ioms and proof rules to decompose the formula
(6) into easier formulas, until only conditions in
first-order real arithmetic remain. These condi-
tions are finally checked for validity with a de-
cision procedure for real arithmetic (quantifier
elimination, for example, through cylindrical al-
gebraic decomposition [23, 24]), resulting in a
proof of the initial logical formula. While the
verification of cyber-physical systems is certainly
challenging, as is their design, KeYmaera X and
its predecessor KeYmaera [25] have already been
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dw ≡ (obst; robot; t := 0; {dyn, t′ = 1 & t ≤ ε})∗ (1)

obst ≡ vo := ∗; ?vo ≤ V (2)

robot ≡


ar := ∗; ωr := ∗; rc := ∗; ? (−b ≤ ar ≤ A ∧ rc > 0 ∧ ωrrc = vr) if safe

ar := 0; ωr := 0 if vr = 0

ar := −b unconditionally

(3)

dyn ≡ p′r = vrdr, v
′
r = ar, ω

′
r =

ar
rc
, d′r = −ωd⊥r , p′o = vo & vr ≥ 0 (4)

safe ≡ ‖pr − po‖∞ >
v2
r

2b
+ V

vr
b

+

(
A

b
+ 1

)(
A

2
ε+ ε(vr + V )

)
(5)

Figure 2: The hybrid system model of the joint discrete and continuous behavior of the robot and
the obstacle. Control decisions are modeled in obst and robot, the physical motion is captured using
differential equations in dyn.

used successfully to verify cars [26, 27], air-
craft [28, 29], trains [30], robots [4], and surgi-
cal robots [31], and to verify the usual control
schemes such as PID [32, 30]. For a tutorial on
modeling and proving safety with dL, see [33].

ModelPlex. Formal verification makes strong
guarantees about the system behavior if ade-
quate models of the system can be obtained. In
any CPS design process, models are essential;
but any model necessarily deviates from the real
world. Faults may cause the system to func-
tion improperly, sensors may deliver uncertain
values, actuators may suffer from disturbance,
or the model may have assumed simpler ideal-
world dynamics for tractability reasons or made
unrealistically strong assumptions about the be-
havior of other agents in the environment. As
a consequence, the verification results obtained
about models of a CPS only apply to the actual
CPS at runtime to the extent that the model ade-
quately represents reality. A high-assurance CPS
must be aware of the limitations in its design
and equipped with means to detect deviations
between design and reality.

The proofs so far formally show that a model
of the robot is safe. In other words, the mod-
eled family of robot controllers provably guaran-
tees passive safety. The remaining task is to val-
idate whether the model is adequate, so that the
safety proof of the model transfers to the actual
system implementation [34, 35]. ModelPlex [5]
is a method to synthesize correct-by-construction

monitors for CPS by theorem proving automati-
cally : ModelPlex is based on the sound axioms
and proof rules of dL [20, 21] to synthesize prov-
ably correct monitors that validate compliance
of system executions with a model. The difficult
question answered by ModelPlex is what exact
conditions need to be monitored at runtime to
guarantee compliance with the models and thus
safety. ModelPlex enables tradeoffs between ana-
lytic power and accuracy of models while retain-
ing strong safety guarantees.

At runtime, the ModelPlex monitors check the
system behavior for model compliance. If the ob-
served system execution fits to the verified model,
then this execution is safe according to the of-
fline verification result about the model. If it
does not fit, then the system is potentially un-
safe because it evolves outside the verified model
and no longer has an applicable safety proof, so
that a verified fail-safe action from the model is
initiated to avoid safety risks (cf. Simplex [6]).

Since failures may occur and software attacks
may happen, actual evolution must be moni-
tored: the acceleration chosen by the controller
must fit to the current situation (for example, ac-
celerate only when safe), the chosen curve must
fit to the current orientation, and no unintended
change to the robot’s speed, position, orientation,
or knowledge about the obstacles occurred. This
means, any variable that is allowed to change in
the model must be monitored. In the example
here, these variables include the robot’s position
pr, longitudinal speed vr, rotational speed ωr,
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acceleration ar, orientation dr, curve rc, and ob-
stacle position po.

ModelPlex uses that the system is sampled pe-
riodically: for each variable there will be two
observed values, one from the previous sample
time (for example, positions pr) and one from
the current sample time (for example, p+

r ). It
is not important for ModelPlex that the values
are apart by exactly the sampling period, but
merely that there is an upper bound (ε). A Mod-
elPlex monitor checks in a provably correct way
whether the evolution observed in the difference
of the sampled values can be explained by the
model. The verified hybrid system models them-
selves are not helpful as fast executable models,
because they involve nondeterminism and differ-
ential equations. Hence, provably correct moni-
tor expressions in real arithmetic are synthesized
from a hybrid system model using an offline proof
in KeYmaera X. These expressions exhaustively
capture the behavior of the hybrid system mod-
els, projected onto the pairwise comparisons of
sampled values that are needed at runtime. The
full process is described in detail in [5].

ModelPlex monitor. Here, let us focus on
a controller monitor expression synthesized from
the model in (1)–(4) above, which captures all
possible decisions of the robot that are considered
safe. A controller monitor [5] checks the decisions
of an (unverified) controller implementation for
being consistent with the discrete model. Mod-
elPlex automatically obtains the discrete model
from model (1)–(4) with the ordinary differential
equation (ODE) being safely over-approximated
by its evolution domain. The resulting condition
monitor in Fig. 3 (7), which is synthesized by
a proof, follows the structure of the model: it
captures the assumptions on the obstacle mono,
the evolution domain from dynamics mondyn, as
well as the specification for each of the three con-
troller branches (braking monb, staying stopped
mons, or accelerating mona).

The obstacle monitor part mono, see (8), says
that the measured obstacle velocity d+

r must not
exceed the assumptions made in the model about
the maximum velocity of obstacles. The dynam-
ics monitor part mondyn, see (9), checks the evo-
lution domain of the ODE and that the con-
troller did reset its clock (t+ = 0). The brak-
ing monitor monb, see (10) defines that in emer-
gency braking the controller must only hit the

brakes and not change anything else (accelera-
tion a+

r = −b, while everything else is of the form
x+ = x meaning that no change is expected).1

When staying stopped mons, see (11), the cur-
rent robot speed must be zero (vr = 0), and the
controller must choose no acceleration and no ro-
tation (ar = 0 and ωr = 0), while everything else
is unchanged. Finally, the acceleration monitor
mona, see (12)–(13), when the distance is safe the
robot can choose any acceleration in the physical
limits −b ≤ a+

r ≤ A, a new non-spinning steering
c+r 6= 0 that fits to the current speed ω+

r c
+
r = vr;

position, orientation, and speed must not be set
by the controller (those follow from the accelera-
tion and steering choice).

The formula monitor in (7) synthesized with
this correct-by-construction proof approach is the
basis for code synthesis, as elaborated next.

Generating Code From a
Mathematical Specification

Given a provably correct monitor specification
that guarantees the desired behavioral (e.g.
safety) properties, it is important that the instan-
tiation of the specification as code is faithfully
implemented. This ensures that all proven be-
havioral properties are preserved during the im-
plementation process. In addition the implemen-
tation must be conservative in the presence of
floating point rounding errors. As many proofs
provided by formal methods are reasoned over
real numbers—as opposed to floating point num-
bers found on computer systems—this difference
in number representations, if not handled appro-
priately, may cause undesirable deviations from
the specified model.

The SPIRAL system [7, 8, 9] synthesizes a
conservative and faithful implementation from
the mathematical specification through the suc-
cessive application of identity rewriting. Each
rewriting step replaces the input expression with
a mathematically equivalent but more detailed
expression that is more aligned to code. By
ensuring that mathematical equivalence is pre-
served after each rewriting step, the correctness
of the final implementation is guaranteed. Fig. 4
shows the overall flow. A multi-stage rewriting

1Note that unchanged obstacle position p+
r = pr

means that the robot should not waste time measuring
the obstacle’s position, since braking is safe in any case.
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monitor ≡ mono ∧mondyn ∧ (monb ∨mons ∨mona) (7)

mono ≡ ‖d+
r ‖ ≤ V (8)

mondyn ≡ 0 ≤ ε ∧ vr ≥ 0 ∧ t+ = 0 (9)

monb ≡ p+
o = po ∧ p+

r = pr ∧ d+
r = dr ∧ v+

r = vr ∧ ω+
r = ωr ∧ a+

r = −b ∧ c+r = cr (10)

mons ≡ vr = 0 ∧ p+
o = po ∧ p+

r = pr ∧ d+
r = dr ∧ v+

r = vr ∧ ω+
r = 0 ∧ a+

r = 0 ∧ c+r = cr (11)

mona ≡ −b ≤ a+
r ≤ A ∧ c+r 6= 0 ∧ ω+

r c
+
r = vr ∧ p+

r = pr ∧ d+
r = dr ∧ v+

r = vr (12)

∧ ‖pr − p+
o ‖∞ >

v2
r

2b
+ V

vr
b

+

(
A

b
+ 1

)(
A

2
ε2 + ε(vr + V )

)
(13)

Figure 3: Synthesized safety conditions. The generated monitor captures conditions on obstacles
mono, on dynamics mondyn, and on the robot controller’s decisions on braking monb, staying stopped
mons, and accelerating mona. The monitor distinguishes two observed values per variable, separated
by a controller run (for example, pr denotes the position before running the controller, whereas p+

r

denotes the position after running the controller).

system [36, 37] consisting of a backtracking and
expansion stage and multiple recursive descent
and confluent term rewriting stages transforms
an initial specification into a final piece of code,
as explained in the remainder of this section.

Problem specification. Mathematical spec-
ifications are specified using SPIRAL’s hybrid
control operator language (HCOL). In HCOL, an
operator is a mathematical function that maps
one or more real vectors to a real vector. Real
scalars are treated as vectors of dimension one,
and higher dimensional objects such as matrices
are linearized into vectors. The following discus-
sion focuses on Eq. (13), which is part of the full
safety condition summarized in Fig. 3. Eq. (13)
is written as HCOL operator as

SafeDistV,A,b,ε : R× R2 × R2 → Z2;

(vr, pr, po) 7→
(
p(vr) < d∞(pr, po)

)
(14)

with d∞(~x, ~y) = ‖~x − ~y‖∞, p(x) = a2x
2 +

a1x + a0, a2 = 1
2b , a1 = V

b + ε
(
A
b + 1

)
, and

a0 =
(
A
b + 1

) (
A
2 ε

2 + εV
)
. This is essentially the

same expression as (13) but makes explicit all
data types and free parameters and expresses the
computation explicitly in terms of higher-level
mathematical objects such as polynomials and
norms.

Breakdown rules and basic operators.
The first step for translating (14) into an equiv-
alent high performance implementation is to de-
rive a top level breakdown rule that explains (14)

in terms of SPIRAL’s library of known mathe-
matical objects expressed in the HCOL language,
summarized in Fig. 5. The rule expressing this
transformation for (14) is derived by KeYmaera
X as

SafeDistV,A,b,ε(., ., .)

→
(
P [a0, a1, a2](.) < d2

∞(., .)
)
(., ., .). (15)

It closely mirrors the mathematical expression of
the specification (14) and thus the original mon-
itoring equation (13). As required, it expresses
the semantics of the safety distance in terms of
the HCOL library shown in Fig. 5. This leverages
the HCOL formalization of well known math-
ematical objects such as infinity norm, Cheby-
shev distance, scalar product, or evaluation of a
polynomial that are part of SPIRAL’s library of
mathematical objects and identities.

The goal of the rewriting process is to break
HCOL operator specifications like (14) into ex-
pressions of basic HCOL operators through re-
peated applications of rules. The list of basic
HCOL operators that are admissible in a fully
expanded expression is shown in Fig. 6. Further,
operations like ◦ and × (operator composition
and Cartesian product) are also allowed.

Consider the example of vector addi-
tion, expressed through the basic operator
Pointwisen×n,(a,b) 7→a+b . The Pointwise operator
takes two parameters (shown as subscripts),
where n × n are the dimensions of the two
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Pointwisen,fi : Rn → Rn; (xi) 7→
(
f0(x0), . . . , fn−1(xn−1)

)
Pointwisen×n,fi : Rn × Rn → Rn;

(
(xi), (yi)

)
7→
(
f0(x0, y0), . . . , fn−1(xn−1, yn−1)

)
Reductionn,fi : Rn → R; (xi)i 7→ fn−1(xn−1, fn−2(xn−2, fn−3(. . . f0(x0, id()) . . . )

Inductionn,fi : R→ Rn+1; x 7→ (fn(x, fn−1(. . . ) . . . ), . . . , f2(x, f1(x, id)), f1(x, id), id())

Figure 6: Basic HCOL operators that have mathematical semantics but also can be seen as functional
language constructs.
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Ʃ-HCOL (loop) expression 
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C code 

Confluent term rewriting 

Figure 4: Code/proof co-synthesis as multi-stage
rewriting system.

input vectors, and (a, b) 7→ a + b is the math-
ematical operation that is performed on each
pair of scalar elements from the two input
vectors. Similarly, the Hadamard product (or
element-wise multiplication) can be defined as
Pointwisen×n,(a,b)7→ab . More complicated oper-
ators can be defined through the composition
of simpler operators through HCOL operator
expressions. For example, the scalar (or dot)

‖.‖n∞ : Rn → R; (xi) 7→ maxi=0,...,n−1 |xi|
dn∞(., .) : Rn × Rn → R; (x, y) 7→ ‖x− y‖n∞

< ., . >n: Rn × Rn → R;
(
(xi), (yi)

)
7→

n−1∑
i=0

xiyi

(xi)n : R→ Rn+1; x 7→
(
x0, x1, . . . , xn

)
P [a0, . . . , an] : R→ R; x 7→

n∑
i=0

aix
i

Figure 5: Library of mathematical objects ex-
pressed as HCOL operators.

product can be described as

< ., . >n→ Reductionn,(a,b) 7→a+b

◦ Pointwisen×n,(a,b) 7→ab . (16)

The recursive decomposition of higher level
HCOL operators into basic operators is captured
within the SPIRAL system as a library of break-
down rules. Fig. 7 collects all the breakdown
rules needed to fully expand the safety distance
monitor (14). By performing all the necessary
substitutions as prescribed by the breakdown
rules, the initial HCOL operator specification
(14) is eventually translated into the finally ex-
panded HCOL expression, shown in Fig. 8, con-
sisting only of basic HCOL operators. This is the
final result of the first stage in SPIRAL’s rewrit-
ing system (backtracking and expansion, Fig. 4).

Code generation. The second stage in the
code generation process is the translation of an
HCOL expression into highly efficient C code.
This is performed by a sequence of rewriting
stages performing either a recursive descend or a
confluent term rewriting phase. Logically, these
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SafeDistV,A,b,ε = Pointwise(x,y)7→x<y

◦
((

Reduction3,(x,y) 7→x+y ◦Pointwise3,x 7→aix ◦ Induction3,(a,b)7→ab,1

)
×
(

Reduction2,(x,y)7→max(|x|,|y|) ◦Pointwise2×2,(x,y)7→x−y
))

Figure 8: The final HCOL expression derived for the monitoring expression (13).

dn∞(., .)→ ‖.‖n∞ ◦ Pointwisen×n,(a,b)7→a−b

‖.‖n∞ → Reductionn,(a,b)7→max(|a|,|b|)

< ., . >n→ Reductionn,(a,b) 7→a+b

◦ Pointwisen×n,(a,b)7→ab

P [a0, . . . , an]→< (a0, . . . , an), . > ◦(xi)n
(xi)n → Inductionn,(a,b)7→ab,1

Figure 7: Breakdown rules that express HCOL
mathematical objects as basic HCOL objects.

steps are grouped into two stages using two sep-
arate sets of substitution rules.

In the first step, HCOL is translated into a
lower level mathematical representation called Σ-
OL, where loops are made explicit. For instance,
Pointwise is translated into the following expres-
sion,

Pointwisen×n,fi →
n−1∑
i=0

eni ◦Pointwise1×1,fi

◦
(
(eni )> × (eni )>

)
, (17)

where eni is a unit n-dimensional basis vector with
the 1 at the ith position and × is the cross prod-
uct. (eni )

>
represents a gather operation and eni

represents a scatter operation. Similarly, the re-
duction operation is translated into Σ-OL by the
rule

Reductionn,(a,b)7→a+b →
n−1∑
i=0

(eni )>.

At the Σ-OL level, optimizations performed by
a traditional optimizing compilers are performed
through substitution rules such as

Pointwisen,fi ◦ ejn → ejn ◦Pointwise1,fj . (18)

# Hadamard Product

decl([i7], loopn(i7, n1,

assign(nth(Y, i7),

mul(nth(X, i7), nth(y1, i7)))))

# Reduction

decl([i4], chain(

assign(nth(Y, V(0)), V(0)),

loopn(i4, n1, decl([ s1 ], chain(

assign(s1, nth(X, i4)),

assign(nth(Y, V(0)), add(nth(Y, V(0)), s1))

)))))

# Scalar Product (optimized)

decl([i8], chain(

assign(nth(Y, V(0)), V(0)),

loopn(i8, n1, decl([ s2, s3 ], chain(

assign(s3, nth(X, i8)),

assign(s2, mul(s3, nth(y1, i8))),

assign(nth(Y, V(0)), add(nth(Y, V(0)), s2))

)))))

Figure 9: Spiral’s internal icode represen-
tation for the (top) Hadamard product,
Pointwisen×n,(a,b) 7→ab, (middle) Reduction,
Reductionn,(a,b)7→a+b, and (bottom) Scalar
Product (after optimization). The icode is
then pretty-printed in the desired programming
language such as C. X is the input vector and Y

is the output vector.

The above rule turns a program fragment that
copies n pieces of data into contiguous memory
addresses before applying the function fi on each
elements, into a program fragment that applies
the same function on the appropriate piece of
data, copies it into contiguous storage, and re-
peats for the remaining n − 1 pieces of data.
While functionally equivalent, the optimized pro-
gram is more efficient since it parses through the
data once.

Notice that the final Σ-OL expression is still
a mathematical expression, but can be seen as
highly optimized loop-based program that imple-
ments a mathematical function. In addition, be-
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cause traditional compiler optimizations are im-
plemented within SPIRAL as substitution rules,
the correctness of the optimizations is ensured.

The second translation step translates a Σ-OL
expression into an actual loop-based program, by
means of a small set of compilation rules like

Code
(
y = (A ◦B)(x)

)
→
{
decl(t),

Code
(
t = B(x)

)
,Code

(
y = A(t)

)}
. (19)

Strong guarantees about loops, conditionals,
and array accesses are inherited and deduced
from the original expression. All this together
guarantees that the program over the real num-
bers is a pure function that is mathematically
equivalent to the original specification. Fig. 9
shows the final generated code for the Hadamard
Product, Reduction operator, and scalar product
over real arithmetic represented in SPIRAL’s in-
ternal code representation, called icode. Rewrit-
ing Σ-HCOL to this internal code representation
requires five translation rules, which are sum-
marized in Table 1. By repeated application of
these five rules, the icode representation for (13)
is shown in Fig. 10.

Code optimization. SPIRAL generates ver-
ified code through a sequence of formally proved
rewrite rules. The trace of the rewrite rules that
were applied provides a certificate that a given
program is correct. However, the generated code
must be compiled. This last step should also be
verified, and can be done through the use of a
certified compiler such as CompCert[38]. As the
goal is correct and efficient code, it is necessary
to ensure the compiled code is optimized. While
the performance of CompCert has improved, it
usually do not yield code with performance that
are comparable with those using state-of-the-art
optimizing compilers such as Intel’s C compiler.
Nonetheless, it can be used since many of the
optimizations a good compiler performs are ac-
complished through the transformations carried
out during the rewrite process, such as the loop
merging performed by (22).

Additional optimizations such as tiling, loop
unrolling, and vectorization can be performed by
source to source transformations and verified at
the code level, and in many cases can be done at
a higher mathematical level like the loop merging
example. Even when the optimizations cannot be
done at the mathematical level, the fact that the

code is being generated allows various assump-
tions, like dependence, to be guaranteed which
simplifies proofs of their correctness. This is il-
lustrated by further optimizations applied to the
scalar product example. After loop merging the
generated code looks like

for (s=0, j = 0; j < 2*N; ++j) {

s += x[j] * y[j];

}

This can be optimized by loop unrolling and vec-
torized code can be obtained by combining the
operations in the unrolled loop.

s0 = 0; s1 = 0; s = 0;

for (i = 0; i < M; ++i)

for (j = 0; j < 2*N; j+=2) {

s0 += x[j] * y[j];

s1 += x[j+1] * y[j+1];

}

s = s0 + s1;

The equivalence of the unrolled code and the
initial code can be easily verified by induction.
Alternatively, the vectorization can be derived
and verified through higher level transformations;
namely the rule

〈., .〉2n → 〈., .〉2 ◦ 〈., .〉n ⊗ I2 (20)

which uses the tensor product [39, 40] to obtain
vectorized code.

These simple transformations can lead to a sig-
nificant performance gain. Timings on an In-
tel Core i7-3770 processor running Ubuntu 14.04
with CompCert 2.5 show a speedup of 3.5 from
just the unrolling. In order to benefit from vec-
torization it is necessary that CompCert be able
to generate code with vector instructions; how-
ever, it is not required that CompCert perform
vectorization as this can be done as shown. This
shows that a certified compiler can be used, with-
out sacrificing performance, when combined with
source to source optimizations provided their
is good support for basic compiler functional-
ity such as register allocation and instruction
scheduling.

Floating-point arithmetic. Finally, the dif-
ference between real and floating point number
representation has to be tackled. A conserva-
tive approximation is attained through the use
of interval arithmetic [10]. Each real number a is
represented by an interval [ainf, asup] where the
boundaries ainf and asup are the floating point
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Code(y = (A ◦B)(x)) → decl(t, chain(
Code(t = B(x)),
Code(y = A(t))))

Code

(
y =

n−1∑
i=0

Ai(x)

)
→ chain(assign(y, 0),

loop(i, [0..n− 1],
Code(y + = Ai(x))))

Code
(
y = (eni )>(x)

)
→ assign(y, x[i])

Code(y = eni (x)) → assign(y[i], x)

Code(y = Pointwise1,f (x)) → assign(y, f(x))

Table 1: Rewrite rules for translating Σ-HCOL
to Spiral’s icode representation.

numbers closest to a, such that ainf ≤ a ≤ asup.
This ensures that the actual (true) value is al-
ways bounded by ainf and asup. Interval arith-
metic then computes using the boundary values
as opposed to the true value. For instance,

[ainf, asup]+[binf, bsup] = [rounddown(ainf+binf),

roundup(asup + bsup)].

Similarly, the multiplication of two intervals is
given by

[ainf, asup]× [binf, bsup] =[
min

(
rounddown(−ainf × binf),

rounddown(ainf × bsup),

rounddown(binf × asup),

rounddown(−asup × bsup)
)
,

max
(

roundup(ainf × binf),

roundup(−ainf × bsup),

roundup(−binf × asup),

roundup(asup × bsup)
)]

(21)

By using proper floating point rounding modes,
operations on the intervals guarantee that the re-
sult interval over floating point numbers includes
the result that is over the real numbers. Imple-
menting interval arithmetic efficiently on modern
processors can be challenging. However, the im-
plementation of interval arithmetics within SPI-
RAL leverages modern architecture features such
as the single instruction multiple data (SIMD)
vector instruction set to reduce the number of
actual instructions executed by the processor.

Final monitor code. Introducing SPIRAL’s
interval arithmetics implementation to the icode

// icode implementation of Eq. (13) over the reals

func(TInt, "dwmonitor", [ X, D ],

decl([i3, i5, q3, q4, s1, s4,

s5, s6, s7, s8, w1, w2],

chain(

assign(s5, V(0.0)),

assign(s8, nth(X, V(0))),

assign(s7, V(1.0)),

loop(i5, [0..2], chain(

assign(s4, mul(s7, nth(D, i5))),

assign(s5, add(s5, s4)),

assign(s7, mul(s7, s8))

)),

assign(s1, V(0.0)),

loop(i3, [0..1], chain(

assign(q3, nth(X, add(i3, V(1)))),

assign(q4, nth(X, add(V(3), i3))),

assign(w1, sub(q3, q4)),

assign(s6, cond(geq(w1, V(0)),

w1, neg(w1))),

assign(s1, cond(geq(s1, s6),

s1, s6))

)),

assign(w2, geq(s1, s5)),

creturn(w2)

)))

Figure 10: The implementation of the dynamic
window monitor in SPIRAL’s internal code rep-
resentation in real arithmetic.

representation in Fig. 10 yields the C implemen-
tation in Fig. 11. It is implemented using the In-
tel C++ compiler’s intrinsic functions to explic-
itly use the special vector instructions provided
by the Intel SSE4 instruction set extension, and
runs in approximately 100 processor cycles on an
3.6 GHz Intel Core i7 processor. Notice the com-
plexity of the code. If manually implemented, the
probability of an error being introduced would in-
crease. However, this complexity is hidden from
the programmer through the use of rewrite rules
that are faithfully applied by SPIRAL. The faith-
ful application of the rewrite rules ensure that the
introduction of interval arithmetics preserve the
input specifications (if compute with real num-
bers). In addition, it is also guaranteed that the
real values is always bounded by the floating-
point interval bounds, which ensures that the im-
plementation is conservative.

Correctness proofs and guarantees. Since
all transformations from specification to final
code are rewrite rules that replace a mathemat-
ical object (expression) with another equivalent
expression, the sequence of rule applications es-
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// Final C/SSE 4.1 Implementation of Equation (13) for Intel Core i7 Processors

// This is a conservative high performance implementation using interval arithmetic

int dwmonitor(float *X, double *D) {

__m128d u1, u2, u3, u4, u5, u6, u7, u8 , x1, x10, x13,

x14, x17, x18, x19, x2, x3, x4, x6, x7, x8, x9;

int w1;

unsigned _xm = _mm_getcsr();

_mm_setcsr(_xm & 0xffff0000 | 0x0000dfc0);

u5 = _mm_set1_pd(0.0);

u2 = _mm_cvtps_pd(_mm_addsub_ps(_mm_set1_ps(FLT_MIN), _mm_set1_ps(X[0])));

u1 = _mm_set_pd(1.0, (-1.0));

for(int i5 = 0; i5 <= 2; i5++) {

x6 = _mm_addsub_pd(_mm_set1_pd((DBL_MIN + DBL_MIN)), _mm_loaddup_pd(&(D[i5])));

x1 = _mm_addsub_pd(_mm_set1_pd(0.0), u1);

x2 = _mm_mul_pd(x1, x6);

x3 = _mm_mul_pd(_mm_shuffle_pd(x1, x1, _MM_SHUFFLE2(0, 1)), x6);

x4 = _mm_sub_pd(_mm_set1_pd(0.0), _mm_min_pd(x3, x2));

u3 = _mm_add_pd(_mm_max_pd(_mm_shuffle_pd(x4, x4, _MM_SHUFFLE2(0, 1)),

_mm_max_pd(x3, x2)), _mm_set1_pd(DBL_MIN));

u5 = _mm_add_pd(u5, u3);

x7 = _mm_addsub_pd(_mm_set1_pd(0.0), u1);

x8 = _mm_mul_pd(x7, u2);

x9 = _mm_mul_pd(_mm_shuffle_pd(x7, x7, _MM_SHUFFLE2(0, 1)), u2);

x10 = _mm_sub_pd(_mm_set1_pd(0.0), _mm_min_pd(x9, x8));

u1 = _mm_add_pd(_mm_max_pd(_mm_shuffle_pd(x10, x10, _MM_SHUFFLE2(0, 1)),

_mm_max_pd(x9, x8)), _mm_set1_pd(DBL_MIN));

}

u6 = _mm_set1_pd(0.0);

for(int i3 = 0; i3 <= 1; i3++) {

u8 = _mm_cvtps_pd(_mm_addsub_ps(_mm_set1_ps(FLT_MIN), _mm_set1_ps(X[(i3 + 1)])));

u7 = _mm_cvtps_pd(_mm_addsub_ps(_mm_set1_ps(FLT_MIN), _mm_set1_ps(X[(3 + i3)])));

x14 = _mm_add_pd(u8, _mm_shuffle_pd(u7, u7, _MM_SHUFFLE2(0, 1)));

x13 = _mm_shuffle_pd(x14, x14, _MM_SHUFFLE2(0, 1));

u4 = _mm_shuffle_pd(_mm_min_pd(x14, x13), _mm_max_pd(x14, x13), _MM_SHUFFLE2(1, 0));

u6 = _mm_shuffle_pd(_mm_min_pd(u6, u4), _mm_max_pd(u6, u4), _MM_SHUFFLE2(1, 0));

}

x17 = _mm_addsub_pd(_mm_set1_pd(0.0), u6);

x18 = _mm_addsub_pd(_mm_set1_pd(0.0), u5);

x19 = _mm_cmpge_pd(x17, _mm_shuffle_pd(x18, x18, _MM_SHUFFLE2(0, 1)));

w1 = (_mm_testc_si128(_mm_castpd_si128(x19), _mm_set_epi32(0xffffffff, 0xffffffff,

0xffffffff, 0xffffffff)) ???

(_mm_testnzc_si128(_mm_castpd_si128(x19), _mm_set_epi32(0xffffffff, 0xffffffff,

0xffffffff, 0xffffffff))));

__asm nop;

if (_mm_getcsr() & 0x0d) {

_mm_setcsr(_xm);

return -1;

}

_mm_setcsr(_xm);

return w1;

}

Figure 11: The implementation of the dynamic window monitor using interval arithmetic in Intel’s
SSE 4.1 instruction set. The shown monitor code runs in about 100 processor cycles on an 3.6 GHz
Intel Core i7 processor.
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tablishes mathematical equivalency of specifica-
tion and final code. Over the real numbers the
code is mathematically identical to the original
specification. Over floating point numbers, the
use of interval arithmetic in the resulting code
ensures that the code is a conservative approxi-
mation. Numerical results are sound as the true
answer is guaranteed to be in the result interval.
Logical answers are sound as the answer is con-
servative: true/false/unknown. However, these
guarantees are only true if the rules themselves
have been implemented correctly.

Each rule that can be applied is formally veri-
fied so that the transformed expressions are guar-
anteed to be equivalent to the original expression.
For example, the rewrite rule (16) is a special case
of the more general rule

Reductionn,f ◦Pointwisen×n,g

→ Reductionn×n,f◦g, (22)

which can be proven by induction on n. Alterna-
tively, the validity of the special case in (16) can
be verified, using the property that the scalar
product is bilinear, and checking that the two
sides agree on a basis. Note that reduction with
plus is the linear transformation given by the 1×n
vector of ones, (1n)>, and the following compu-
tation shows that the left and right hand sides of
(16), applied to an arbitrary pair of standard ba-
sis elements, are both equal to δi,j , the Kronecker
delta.

(1n)>(eni · enj ) = (1n)>δi,je
n
i

= δi,j(1
n)>eni

= δi,j = 〈eni , enj 〉

Similarly Rule 17 can be verified by applying
the left and right hand sides to an arbitrary pair
of vectors (x, y) and checking that the j-th ele-
ment of the results are the same.

(enj )> ◦
∑n−1

i=0

(
eni ◦ Pointwise1×1,fi ◦(

(eni )> × (eni )>)
)
(x, y)

=
∑n−1

i=0

(
(enj )> ◦ eni ◦ Pointwise1×1,fi ◦
((eni )> × (eni )>)

)
(x, y)

=
∑n−1

i=0

(
δi,j ◦ Pointwise1,fi ◦
((eni )> × (eni )>)

)
(x, y)

= (enj )> ◦ Pointwisen×n,fi(x, y)

These calculations can be formalized and
checked with a proof assistant such as Is-
abelle [41] or Coq [42]. Similar calculations al-
low us to verify the rule that merges the reduc-
tion and pointwise operators which optimizes the
scalar product computation to use one instead of
two loops.

When converting Σ-OL expressions to code we
must verify that the resulting code correctly pre-
serves the mathematical semantics of the expres-
sion. Once correctness is proven for the basic ex-
pressions such as reduction and pointwise, then
an inductive proof can be obtained to prove that
the code generated for arbitrary expressions built
up form higher level operators such as compo-
sition and Cartesian product are correct. Sim-
ilarly, optimizations that are traditionally per-
formed by optimization compilers are formally
written as rewrite rules in SPIRAL, thus proving
that the optimizations applied by SPIRAL for
performance reasons retain the correctness guar-
entees of the input specifications. For more de-
tails, see “Code Optimization as Rewrite Rules”.

Anomaly Detection as
Statistical Deviation from

Nominal Behavior
This section presents a set of statistical methods
for anomaly detection based on two observations:
(a) Robot sensors usually produce data that is re-
dundant but noisy, and (b) It is often feasible to
specify a priori a model of nominal behavior for
these redundancies, but not to fully specify all the
anomalies that may occur. Thus, the resulting al-
gorithms first build statistical models of nominal
behavior, and then detect anomalies during exe-
cution by finding sequences of observations that
do not fit the model of nominal behavior.

Nominal models from redundancy

Robots often produce redundant information
about the world from various sources. This re-
dundancy can occur at various levels, such as
world state estimation, task completion time, or
motion properties. This section explores the ex-
ample of monitoring the robot’s motion prop-
erties, since it is applicable to many mobile
robots. Information about the robot’s motion
can be obtained from its wheel encoders, GPS
sensors, IMUs, cameras, and the robot’s input
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command, and localization algorithms that in-
tegrate these sensors, among others. Generally,
given two simultaneous observations x̂1

t and x̂2
t

obtained from different sources at time t, the al-
gorithms assume that it is possible to map them
to two comparable observations x1

t = f1(x̂1),
and x2

t = f2(x̂2) that are expected to have sim-
ilar values during nominal execution. For exam-
ple, the robot’s displacement between timesteps
can be computed both from the robot’s wheel
encoder values, and from consecutive outputs of
a sensor-fusing localization algorithm. Fig. 12a
shows graphs of these two sources of information
in the CoBot mobile robots [43] during nomi-
nal execution. The properties of the difference
∆xt = x1

t − x2
t can be extracted from data of

nominal execution. In particular, since many sen-
sors have distributions that are approximately
normal, the following examples will adhere to
that distribution. Thus, the algorithm first cre-
ates a model θ0 of nominal execution:

P (∆xt|θ0) = N (µ, σ2) where µ ∈ [µ−, µ+]
(23)

That is, the difference between the two sources is
normally-distributed, with variance σ2 extracted
from nominal execution, and mean µ allowed to
be within a small interval [µ−, µ+] around 0.
Other sensors and sources of information may
have different distributions, but this section fo-
cuses on normal distributions as a useful example
in robotics.

Statistical testing for anomalies

Given that the model θ0 is given by a normal dis-
tribution, the detection algorithms use a Z-test
to determine the probability of observing a set of
observations at least as unlikely as X given nom-
inal execution; this section describes the Z-test
for one-dimensional observations, although ex-
tension to higher dimensions is straightforward.

Given the set of observations X =
{∆x1,∆x2, . . . ,∆xn}, the algorithm esti-
mates the probability that the true mean
µ of the underlying distribution lies within
[µ−, µ+]. That is, it calculates the probability
P (µ− ≤ µ ≤ µ+). First, define the standardized

sample mean Z:

Z(X) =
X̄(X)− µ√
σ2/|X|

where X̄(X) =
1

n

n∑
i=1

∆xi.

(24)

The standardized problem then becomes that of
calculating P (Z− ≤ Z ≤ Z+), where Z− and
Z+ are calculated analogously to Z, replacing µ
by µ+ and µ− respectively. Since these variables
are in standard form, the desired proability is
obtained using the standard cumulative normal
distribution Φ(Z):

P (µ− ≤ µ ≤ µ+) = P (Z− ≤ Z ≤ Z+) (25)

= P (Z ≤ Z+)− P (Z ≤ Z−)

= Φ(Z+)− Φ(Z−)

This probability is then compared to a thresh-
old Pmin to determine if the set X is too unlikely
to come from θ0.

A Multi-Scale window approach to
anomaly detection

Depending on the type of anomaly to be detected,
different sets of observations may be analyzed for
anomalies. This section focuses on analyzing se-
quences of observations to detect anomalies that
start occurring at some time t0, and affect the
robot at any time t ≥ t0, such as those illus-
trated in Fig. 12; other work has analyzed sets of
non-sequential but otherwise correlated observa-
tions [44].

During each time step tk of execution, then,
the algorithm searches for a time t0 such that
P (∆xt0 ,∆xt0+1, . . . ,∆xtk |θ0) is too low to be
considered nominal. One approach used in re-
lated work is to test every possible t0 ∈ [0, tk]
for anomalies. However, this approach grows
linearly with the number of observations, which
may be restrictive for online monitoring of long-
deployment robots. Instead, the algorithm pre-
sented here uses an approach that tests windows
of time of various scales to find anomalies. Thus,
the detector creates N sets X0, X1, . . . , XN of
most recent observations on which to conduct a
Z-test, where

Xi = {∆xk,∆xk−1, . . . ,∆xk−2i}. (26)

Then, the Z-test, previously discussed, is con-
ducted on each of these windows of time.
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(a) Nominal Execution
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(b) Subtle Anomaly
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(c) Clear Anomaly

Figure 12: Motion data gathered from the CoBot robots [43]. For the anomalies, the wheel encoders
displayed varying levels of malfunctioning.

Algorithm 1 Multi-window approach to statis-
tical anomaly detection.
Input: Sequence X of observations; Number of
windows N ; Nominal model θ0

Output: true if an anomaly is detected, false oth-
erwise.

function DetectAnom(X = [∆x0,∆x1, . . . ,∆xk],
N , θ0 = {σ, µ−, µ+})

for i ∈ {0, 1, . . . , N,∞} do
Xi ← {∆xk,∆xk−1, . . . ,∆xk−2i} . Extract

data from window i

Z+(X) =
X̄(Xi)−µ−√
σ2/|Xi|

. Standardized deviations

Z−(X) =
X̄(Xi)−µ+√
σ2/|Xi|

P ← Φ(Z+)− Φ(Z−) . Probability that
µ ∈ [µ−, µ+]

if P < Pmin then
return true . Probability too low, return

failure
end if

end for
return false . No probability found at any time

scale
end function

Algorithm 1 summarizes the process of on-
line statistical anomaly detection. The algorithm
conducts the statistical Z-test on data coming
from windows of N different sizes to find anoma-
lies.

The time required to detect anomalies highly
depends on the nature of the subtlety of the
anomaly. Fig. 13 illustrates this: anomalies of
different magnitudes were injected into one of the
CoBot robot’s wheel encoders: three of the wheel
encoders work normally, but the fourth reports
(1 − ε)d, where d is the displacement it would
report if working normally. Thus, by varying ε
form −0.5 to −0.1, the encoder reported half of

its displacement, to 90% of its displacement. As
ε approaches 0 –i.e., no anomaly–, the detection
time asymptotically approaches infinity. Fig. 12
shows two anomalies: one with ε = 0.1 and one
with ε = 0.4.

Detecting Sensor
Inconsistencies and Secure

State Estimation

This section focuses on malicious false-data-
injection (FDI) attacks [45, 46, 47, 48] on the
physical sensing resources in which an adversary
potentially tampers (either remotely by hacking
into the sensor software interfaces or by phys-
ically altering the sensing devices) the sensor
data. Such attacks, if not detected promptly,
might lead to inaccurate estimation of the ve-
hicle state (such as its location and velocity) and
trigger incorrect control actions with potentially
devastating consequences. This section reviews
a class of model-based approaches suited to the
current application that use sensor data in con-
junction with physics-based information (knowl-
edge of vehicle kinematics models and nominal
models of the sensors) to perform attack detec-
tion and secure state estimation. Model-based
approaches, based on tight integration of sys-
tem physics and sensor (data) characteristics,
can be effective in terms of performance and
implementability when sensor measurements can
be linked to and represented in terms of phys-
ical state variables such as vehicle position and
velocity. However, there might be other sens-
ing modalities that may not be readily linked
to the physical characteristics: information from
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Figure 13: Time to fault detection as a func-
tion of the chosen fractional error ε. (a) shows
all the experimental results, while (b) leaves out
ε = −0.05 for visualization of the remaining data.
Error bars show one standard deviation.

these sensors might still contribute to the pri-
mary task of inconsistency detection, however,
through purely sensor data driven processing.
The interested reader may wish to refer to the
side bar “Multi Modal Consistency” for addi-
tional details.

Overview. Model-based approaches are char-
acterized by three crucial elements: dynamical
systems (state-space) based representations of
the vehicle kinematics, sensor models (both be-
fore and after potential FDI attacks), and the in-
consistency detection and secure state estimation
module. The remainder of this section discusses
these three components in more detail and gives a
theorem on detectable and undetectable attacks.
The approach is based on linear models and pro-
vides an inconsistency detection procedure.

State-space models. A very simplistic ab-
straction of the vehicle kinematics may be ob-

tained as

p(t) = p(0) + tv(0) +

∫ t

0

∫ s

0

a(u)duds, (27)

where p(t) and v(t) denote the position and ve-
locity vectors respectively at time t (collectively
the state x(t)), and t = 0 corresponds to the ori-
gin of motion with p(0) and v(0) denoting the
initial position and velocity respectively. The
vector a(·) corresponds to the instantaneous ac-
celeration and, in control terminology, may be
viewed as the input to the system. The acceler-
ation may be assumed to be known up to a un-
known but bounded (possibly disturbance) factor:
in general, in this formulation it is assumed that
at all times t, the deviation between the actual
a(t) and its known (predictable) part aknown(t)
is norm-bounded by a known constant ā. (In the
worst case with no knowledge about the instan-
taneous acceleration, this constant corresponds
to the vehicle’s maximum possible acceleration
in the given scenario.)

The important thing to note in the above is
that, assuming the initial state x(0) at time t = 0
is known, the state uncertainty at any future time
instant t may be captured by the relation

x(t) ∈ Ctp(ā,x(0)), (28)

where Ctp(·) is a compact convex set depending
on x(0) and ā only. In other words, the vehi-
cle kinematics provides (predictive) information
about the system’s state in terms of a bounded
set of feasible states around the initial state; the
associated prediction uncertainty is quantified by
the size of Ctp(ā,x(0)) which grows with t and ā.

Sensor models. In the nominal no-attack
scenario, the n-th sensor, n = 1, . . . , N , is as-
sumed to measure a noisy linear function of the
state at each sampling instant k∆. Here k,
k = 1, 2, . . . , denotes the discrete sampling in-
dex and ∆ the sampling period. Formally, the
observation yn(k∆) at the n-th sensor at k∆ is
modeled as

yn(k∆) = Hnx(k∆) + wn(∆), (29)

where the matrix Hn specifies the sensing modal-
ity (such as GPS, wheel encoder, or IMU) and
wn(∆) the unknown sensing noise. The noise
wn(·) is assumed to be norm-bounded but pos-
sibly state-dependent, i.e., there exists a con-
tinuous function w̄n(·) of the state such that
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‖wn(k∆)‖ ≤ w̄n(x(k∆)) for all k. Commonly
used vehicle sensing resources which depend lin-
early on the instantaneous position and veloc-
ity may be cast in terms of (29), whereas, the
bounded sensing noise is quite realistic for vehic-
ular applications.

In the presence of FDI attacks, the sensor
model (29) assumes the following form:

yn(k∆) = Hnx(k∆) + wn(k∆) + bn(k∆), (30)

where bn(k∆) denotes the additional carefully
crafted false data injected by the attacker into the
nominal sensor measurements which is unknown
to the system operator. Thus, from the system
operator’s viewpoint, both the sensor noise and
the FDI attack contribute to the uncertainty of
the measurement. The goal of the operator at
any instantK∆ is to use the sensor data collected
over all sensors at all times k∆, k = 1, . . . ,K
in conjunction with the knowledge of the vehicle
kinematics to detect whether there has been an
attack, i.e., bn(k∆) 6= 0 for some n and k, or not,
and simultaneously obtain a feasible estimation
of the vehicle state. This leads to inconsistency
(attack) detector design discussed next.

Inconsistency detection and secure state
estimation. In the following an optimal (to
be discussed later) online recursive inconsistency
detection and state estimation algorithm is pre-
sented. To this end, define for each n and k
the set of feasible vehicle states Xn(yn(k∆)) con-
forming to the measurement yn(k∆), i.e.,

Xn(yn(k∆)) =
{x : ‖yn(k∆)−Hnx(k∆)‖ ≤ kn(x(k∆))} .

(31)
Now, consider the following recursive set mem-
bership filtering (RSMF) procedure, which gen-
erates recursively at each time instant k∆ a set-
valued estimate T (k) of the vehicle’s state x(k∆):

• Initialization: Set T (0) = {x(0)}.

• Update: At each k ≥ 0, define the set

Tp(k + 1) =
⋃

x̂∈T (k)

C1
p(ā, x̂), (32)

where the set C1
p(·) corresponds to the set-

valued one-step state prediction as a func-
tion of the acceleration-related norm-bound

ā and past state information T (k) as intro-
duced in (28). Now, update T (k) as

T (k+1) = Tp(k + 1)︸ ︷︷ ︸
one-step

prediction

N⋂
n=1

Xn(yn((k + 1)∆))︸ ︷︷ ︸
innovation

.

(33)

• Detection, estimation and termination crite-
ria: If T (k + 1) = ∅ declare an attack and
terminate; otherwise, declare T (k+ 1) to be
the set of feasible vehicle states at time k+1
(in particular, any x̂ ∈ T (k+1) may be taken
to be an estimate of x((k + 1)∆)) and con-
tinue the update step.

Note that, if in a given time horizon [0,K∆],
T (k) 6= ∅ for all k = 1, . . . ,K, the test is in-
conclusive as to whether or not there has been
no attack, i.e., bn(k∆) = 0 for all n, k: it might
be possible that the attacker launched an unde-
tectable attack trajectory {bn(k∆)}. In fact, un-
detectable attacks constitute non-zero attack tra-
jectories {bn(k∆)} that are carefully crafted such
that they induce sensor observations that are fea-
sible with respect to nominal or no-attack scenar-
ios. The discussion on undetectable attacks will
be revisited, but note, depending on the sens-
ing model (the Hn matrices) and the noise char-
acteristics, such attacks may exist. These un-
detectable attacks, when they exist, correspond
to manipulating the sensor observations carefully
(by the attacker) as a function of the geome-
try of the sensing models and the noise proper-
ties so as to induce tampered observations which
nonetheless conform to all physical and sensing
constraints. The following result presents impor-
tant properties and optimality of the proposed
RSMF algorithm (31)–(33).

Proposition 1 The RSMF procedure outlined
above satisfies the following properties:

• The procedure is consistent, i.e., if, in a
given time horizon [0,K∆], there is no FDI
attack, then T (k) 6= ∅ for all k = 1, . . . ,K.
Further, in this case, the set T (k) exactly
corresponds to the set of all feasible sys-
tem states x̂(k∆) (including the true but
unknown state x(k∆)) that conform to the
vehicle kinematics and (non-attacked) mea-
surements in [0,K∆].
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• The procedure is optimal in the class of con-
sistent attack detectors under similar knowl-
edge constraints, i.e., in a given time hori-
zon [0,K∆], any non-zero attack sequence
{bn(k∆)}n,k that is non-detectable by the
RSMF procedure is also non-detectable by
any other consistent attack detector under
similar knowledge constraints.

• If the noise norm-bound functions kn(·),
see (29), are concave, the sets T (k) are con-
vex for all k.

• If the collective observation matrix H =
[H>1 H>2 · · · H>N ]>, with > denoting matrix
transpose, has full (row)-rank, the diameter
of the set-valued estimation sets T (k) stay
bounded, i.e., there exists a constant c > 0
such that

sup
k

sup
x̂,´̂x∈T (k)

∥∥∥x̂− ´̂x
∥∥∥ ≤ c. (34)

Discussion. Implications of Proposition 1
are briefly described as follows. The consistency
shows, in particular, the proposed detector has
zero false alarm rate. The optimality in the class
of all consistent detectors is clearly desirable.
The convexity of the T (k) for all k (together with
the fact that the sets stay bounded, see the fi-
nal assertion of Proposition 1) implies that the
detection-estimation step at each k (see (33)) re-
duces to a convex feasibility problem [49] and
hence, may admit efficient numerical implemen-
tations such as by using the method of alternate
projections. Finally, the (uniform) boundedness
assertion implies that as long as the collective
sensing model is sufficiently informative (essen-
tially, an observability condition), the state esti-
mation error (obtained by selecting an arbitrary
member of T (k) as the estimate of x(k∆) at each
instant k∆) under no-attack scenarios (respec-
tively in scenarios involving detectable attacks)
stays bounded at all times (respectively at all
times till attack detection).

Undetectable attacks. Returning to the is-
sue of attack undetectability, as noted earlier, the
existence of undetectable attacks (and the set of
all undetectable attacks) is, in general, jointly de-
termined by the sensing models (the Hn matri-
ces) and the noise characteristics. There is an im-
portant(sub)class of fundamental undetectable

attacks are undetectable even in the limit of zero
noise. These attacks are solely determined by the
geometry of the sensing models. There is a rich
literature on the characterization of such funda-
mental undetectable conditions for general lin-
ear time-invariant cyber-physical systems of the
form studied in this paper [48, 50, 51, 52, 53, 54].
More recently, geometric control techniques have
been employed to characterize FDI attack detec-
tion in cyber-physical systems in the presence of
side information and more refined classification of
attacks, for instance, characterizing attacks that
can be sustained indefinitely without being de-
tected and other related topics such as quickest
detection of attacks (see [55]).

Tool Chain and Live Demos
The applicability of the approach discussed in
this article was demonstrated on both the Land-
shark robot (shown in Fig. 14), a small scale com-
modity military robot, and an American-built
car. In a series of demonstrations at the end of
Phases I and II of the DARPA HACMS program,
the three thrusts of the approach and their inter-
dependence were displayed.

Emergency brake monitor. The KeY-
maera X and SPIRAL systems were used to gen-
erate a monitor that ensures that the car/robot
will not hit an obstacle between the current and
subsequent execution of the monitor. In addi-
tion, if the assumed model of the environment no
longer fits the observed environment, the moni-
tor initiates an emergency stop. SPIRAL takes
the monitoring expression derived by KeYmaera
X as input and synthesizes a software implemen-
tation and the accompanying proof that together
ensure whenever the software says the monitor-
ing expression evaluates to false the true mon-
itoring expression over the real numbers would
have evaluated to false. Thus, the software im-
plementation is proven to be conservative. This
code is then deployed on the Landshark robot
and the American-built car. Fig. 14 shows the
moment when the KeYmarea-derived/SPIRAL-
synthesized emergency monitor initiates an emer-
gency stop of the Landshark robot to avoid hit-
ting the obstacle.

This demonstration showed that a formal proof
system, coupled with a provably correct method
of generating conservative and efficient software
implementation, can be used to generate quality
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Figure 14: The Landshark robot stopping safely in front of an obstacle.

software that can be deployed on an actual pro-
duction system. However, without ensuring that
the inputs into the system are “reasonable” given
the known operating environment, an adversary
can still fool the monitor into performing out-
side of its operating assumptions by providing
false/spoofed input signals. In the demonstra-
tion, the adversary was able to fool the monitor
with false input signals (spoofed GPS that “tele-
ported” the robot to a incorrect location), result-
ing in the Landshark running over the cone.

Defense against sensor spoofing. To ad-
dress this issue, side channel redundancy was
implemented to detect sensor spoofing. Specif-
ically, inputs from the GPS and wheel encoders
on the vehicle were fused statistically to detected
when the mean of the difference between the two
input signals deviated beyond a set threshold.
These side channel redundancy algorithms were
similarly generated by SPIRAL from their math-
ematical specifications. With the addition of
side channel redundancy to the emergency brake
monitor, changes of GPS values that were incon-
sistent with the inputs from the wheel encoders
were detected. The presence of unreliable (i.e.,
spoofed) GPS inputs then triggered the emer-
gency brakes, which stop the Landshark before
the problem became catastrophic (i.e. the vehi-
cle runs into an obstacle).

Tool chain. A cloud-hosted commercial grade
tool chain with KeYmaera X and SPIRAL is ac-
cessible through a browser-based IDE (shown in
Fig. 15). This makes the utilization of side chan-
nel redundancy, formal verification, and provably
correct code generation accessible to a broader
user base. Using the interface a user can perform
a variety of tasks, such as studying and running
examples, modifying existing projects, and build-
ing new projects, while the IDE provides levels of
interaction ranging from click-and-run scripts to
a command line window for expert users. Multi-
ple users can log into the same instance for col-
laborative sessions, and users and projects are
supported by standard scheduling and versioning
tools in the cloud environment.

Along with exposing the full functionality of
the core tools the interface has many of the gen-
eral features typical of an IDE, such as context-
sensitive menus, multiple tabs, online help, a text
editor with language-specific syntax highlighting,
and file downloads.

Conclusion
This article provides an overview of the High As-
surance SPIRAL project, which is part of the
DARPA HACMS program. The project brings
together formal verification, code synthesis, and
compilation aspects to provide end-to-end guar-
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Figure 15: The cloud computing interface to the integrated KeYmaera X and SPIRAL tool chain.
The model and code generation of the dynamic window monitor is shown.

antees for control algorithms and safety moni-
tors deployed on cyber-physical systems such as
unmanned ground and air vehicles and state-of-
the-art cars. In addition, the project leverages
robotics and signal processing algorithms to de-
tect attacks and establish trust in the available
sensor readings. Together, the combined ap-
proach provides systematic and provable meth-
ods for designing controllers for specified desir-
able behaviors, generating implementations of
the controllers with guarentees of correctness in
the presence of floating point errors, and tech-
niques and algorithms for detecting inconsisten-
cies that may indicate the presence of an at-
tacker.

This approach is orthogonal to, and builds
upon traditional IT security defenses such as
communication encryption and access controls.
Most traditional security-in-defence techniques
focuses on the securing the infrastructure and ap-
plications to ensure confidentiality, integrity and
availability of the system. The presented ap-
proach provided added assurance in the form of
guaranteed and provable behaviors, the absence
of unintended errors in programming, and higher
trust-worthiness of the sensor inputs.

This project also demonstrates that formal
method techniques can be used to generate pro-

duction quality code of significant complexity
that can be deployed on, and used to oper-
ate actual cyber-physical systems. The feasi-
bility and power of the presented approach was
demonstrated at the final Phase I and Phase
II demonstrations of the DARPA HACMS pro-
grams, where the team hardened the Landshark
robot and an American built car to demonstrate
the detection of GPS spoofing attacks and guar-
anteed passive safety. All implementations of
algorithms discussed in this article were gener-
ated using an cloud-based tool front-end that in-
tegrated KeYmaera X and SPIRAL. This pack-
aging of formal methods and side channel redun-
dancy methods in a user friendly format shows
a way forward to deploy these techniques on
a larger scale for critical cyberphysical systems
that require an extra high level of assurance and
safety guarantees.
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Figure 16: Landshark. The camera, the turret,
and the paintball gun rotate.

Sidebar: Multi-Modal
Consistency

A data-centric sensor fusion can be adopted to
detect multi-modal sensor inconsistency, like in-
consistency between a camera view and the ori-
entation and posture of a robot. Based on the
data received from the sensors, a model of the
world is built and compared to the inputs from a
different set of sensors. The model of the world
and the inputs from the second of sensors must
be consistent or an alarm would be triggered.

An example of this approach is demonstrated
on the Landshark ground vehicle. Specifically,
the Landshark is equipped with an auxiliary cam-
era system that is used to detect inconsistencies
in the values returned by the rotational sensors
on the Landshark. It is important to note that,
while the images captured by the camera (see
details below) may not be readily linked to the
vehicle physical kinematics as in the model-based
approach discussed above, the image data can be
compared with other invariants to detect incon-
sistencies.

The LandShark has four rotation degrees of
freedom: 1) camera rotations around the hor-
izontal and the vertical rotation axes; 2) turret
rotations around the vertical axis; and 3) paint-
ball gun rotations around the horizontal rotation.
The LandShark has sensors to detect these rota-
tion parameters. The key idea is to check the
consistency between the data provided by the
sensors and the images captured by the camera.
At each time step, the rotation parameters re-
turned by the sensors are used to generate car-
toon images of what the camera should capture.

(a) (b)

(c) (d)

Figure 17: Two pairs of examples. Real image
(17a) and cartoon image (17b) are consistent,
showing that the sensors return the correct rota-
tion parameters. Real image (17c) and cartoon
image (17d) are inconsistent, showing that there
is an e-attack.

The real images are captured by the camera in
the same time step, and used as reference images.
The cartoon images are subsequently compared
with these real images to check for consistency.
If they are inconsistent, the attack is flagged. If
they are consistent, the sensors are assumed to
be reliable.
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