
Operator Language: A Program Generation
Framework for Fast Kernels ?

Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel
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Abstract. We present the Operator Language (OL), a framework to automati-
cally generate fast numerical kernels. OL provides the structure to extend the pro-
gram generation system Spiral beyond the transform domain. Using OL, we show
how to automatically generate library functionality for the fast Fourier transform
and multiple non-transform kernels, including matrix-matrix multiplication, syn-
thetic aperture radar (SAR), circular convolution, sorting networks, and Viterbi
decoding. The control flow of the kernels is data-independent, which allows us
to cast their algorithms as operator expressions. Using rewriting systems, a struc-
tural architecture model and empirical search, we automatically generate very
fast C implementations for state-of-the-art multicore CPUs that rival hand-tuned
implementations.
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1 Introduction

In many software applications, runtime performance is crucial. This is particularly true
for compute-intensive software that is needed in a wide range of application domains
including scientific computing, image/video processing, communication and control. In
many of these applications, the bulk of the work is performed by well-defined mathe-
matical functions or kernels such as matrix-matrix multiplication (MMM), the discrete
Fourier transform (DFT), convolution, or others. These functions are typically provided
by high performance libraries developed by expert programmers. A good example is In-
tel’s Integrated Performance Primitives (IPP) [1], which provides around 10,000 kernels
that are used by commercial developers worldwide.

Unfortunately, the optimization of kernels has become extraordinarily difficult due to
the complexity of current computing platforms. Specifically, to run fast on, say, an off-
the-shelf Core 2 Duo, a kernel routine has to be optimized for the memory hierarchy, use
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SSE vector instructions, and has to be multithreaded. Without these optimizations, the
performance loss can be significant. To illustrate this, we show in Fig. 1 the performance
of four implementations of MMM (all compiled with the latest Intel compiler) measured
in giga-floating point operations per second (Gflop/s). At the bottom is a naive triple
loop. Optimizing for the memory hierarchy yields about 20x improvement, explicit use
of SSE instructions another 2x, and threading for 4 cores another 4x for a total of 160x.
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Fig. 1. Performance of four double precision implementations of matrix-matrix multiplication.
The operations count is exactly the same. The plot is taken from [2].

In other words, the compiler cannot perform the necessary optimizations for two main
reasons. First, many optimizations require high level algorithm or domain knowledge;
second, there are simply too many optimization choices that a (deterministic) compiler
cannot explore. So the optimization is left with the programmer and is often platform
specific, which means it has to be repeated whenever a new platform is released.

We believe that the above poses an ideal scenario for the application of domain-specific
languages (DSLs) and program generation techniques to automatically generate fast
code for kernel functions directly from a specification. First, many kernel functions
are fixed which helps with the design of a language describing their algorithms, and
available algorithms have to be formalized only once. Second, since many optimizations
require domain knowledge, there is arguably no way around a DSL if automation is
desired. Third, the problem has real-world relevance and also has to address the very
timely issue of parallelism.

Contribution of this paper. In this paper we present a program generation framework
for kernel functions such as MMM, linear transforms (e.g. DFT), Viterbi decoding,
and others. The generator produces code directly from a kernel specification and the
performance of the code is, for the kernels considered, often competitive with the best
available hand-written implementations. We briefly discuss the main challenges and
how they are addressed by our approach:

– Algorithm generation. We express algorithms at a high abstraction level using a
DSL called operator language (OL). Since our domain is mathematical, OL is de-



rived from mathematics and it is declarative in that it describes the structure of
a computation in an implementation-independent form. Divide-and-conquer algo-
rithms are described as OL breakdown rules. By recursively applying these rules a
space of algorithms for a desired kernel can be generated. The OL compiler trans-
lates OL into actual C code.

– Algorithm optimization We describe platforms using a very small set of parameters
such as the vector datatype length or the number of processors. Then we identify
OL optimization rules that restructure algorithms. Using these rules together with
the breakdown rules yields optimized algorithms. It is an example of rule-based
programming and effectively solves the problem of domain specific optimizations.
Beyond that, we explore and time choices for further optimization.

Our approach has to date a number of limitations. First, we require that the kernels are
for fixed input size. Second, the kernels have to be input data independent. Third, the
algorithms for a kernel have to possess a suitable structure to be handled efficiently.

This paper builds on our prior work on Spiral, which targets program generation for
linear transforms based on the language SPL [3–6]. Here we show for the first time how
to go beyond this domain by extending SPL to OL using a few kernels as examples.

Related work. The area of program generation (also called generative programming)
has gained considerable interest in recent years [7–11]. The basic goal is to reduce the
development, maintenance, and analysis of software. Among the key tools for achieving
these goals, domain-specific languages provide a compact representation that raises the
level of abstraction for specific problems and hence enables the manipulation of pro-
grams [12–16]. However, this work has to date rarely considered numerical problems
and focused on correctness rather than performance.

ATLAS [17] is an automatic performance tuning system that optimizes basic linear al-
gebra functionality (BLAS) using a code generator to generate kernels that are used in
a blocked parameterized library. OSKI (and its predecessor Sparsity) [18] is an auto-
matic performance tuning system for matrix-vector multiplication for sparse matrices.
The adaptive FFT library FFTW [19] implements an adaptive version of the Cooley-
Tukey FFT algorithm. It contains automatically generated code blocks (codelets) [20].
The TCE [21] automates implementing tensor contraction equations used in quantum
chemistry. FLAME [22] automates the derivation and implementation of dense linear
algebra algorithms.

Our approach draws inspiration and concepts from symbolic computation and rule-
based programming. Rewriting systems are reviewed in [23]. Logic programming is
discussed in [24]. An overview of functional programming can be found in [25].

2 Program Generation Framework for Fast Kernels

The goal of this paper is to develop a program generator for high performance kernels.
A kernel is a fixed function that is used as library routine in different important applica-



Fig. 2. Our approach to program generation: The spaces of architectures (left) and algorithms
(right) are abstracted and joined using the operator language framework.

tions. We require that the input size for the kernel is fixed. Examples of kernels include
a discrete Fourier transform for input size 64 or the multiplication of two 8×8 matrices.

To achieve high performance, our generator produces programs that are optimized to
the specifics of the targeted computing platform. This includes tuning to the memory
hierarchy and the efficient use of vector instructions and threading (if available). To do
this efficiently, a few platform parameters are provided to the generator and the platform
is assumed to be available for benchmarking of the generated code, so an exploration
of alternatives is possible.

In summary, the input to our generator is a kernel specification (e.g., DFT64) and plat-
form parameters (e.g., 2 cores); the output is a fast C function for the kernel. Perfor-
mance is achieved through both structural optimization of available algorithms based
on the platform parameters and search over alternatives for the fastest. Intuitively, the
search optimizes for the memory hierarchy by considering different divide-and-conquer
strategies.

Fig. 2 shows a very high level description of our approach, which consists of three key
components: 1) A DSL called operator language (OL) to describe algorithms for ker-
nels (right bubble); 2) the use of tags to describe architecture features (left bubble); 3)
a common abstraction of architecture and algorithms using tagged OL. We briefly de-
scribe the three components and then give detailed explanations in separate subsections.

Operator language (OL): Kernels and algorithms. OL is a mathematical DSL to
describe structured divide-and-conquer algorithms for data-independent kernels. These
algorithms are encoded as breakdown rules and included into our generator. By recur-
sively applying these rules, the generator can produce a large space of alternative algo-
rithms for the desired kernel. OL is platform-independent and declarative in nature; it
is an extension of SPL [3, 4] that underlies Spiral.



Hardware abstraction: Tags. We divide hardware features into parameterized para-
digms. In this paper we focus on two examples: vector processing abilities (e.g., SSE
on Intel P4 and later) with vector length ν, and shared memory parallelism with p cores.

Common abstraction: Tagged operator language. The key challenge in achieving
performance is to optimize algorithms for a given paradigm. We do this in steps. First,
we introduce the hardware paradigms as tags in OL. Second, we identify basic OL
expressions that can be efficiently implemented on that paradigm. These will span a
sublanguage of OL that can be implemented efficiently. Finally, we add generic OL
rewriting rules in addition to the breakdown rules describing algorithms. The goal is
that the joint set of rules now produces structurally optimized algorithms for the de-
sired kernel. If there are still choices, feedback driven search is used to find the fastest
solution.

Besides the above, our generator requires a compiler that translates OL into actual C,
performing additional low level optimizations (Section 3). However, the focus of this
paper is the OL framework described next in detail.

2.1 Operator Language: Kernels and Algorithms

In this section we introduce the Operator Language (OL), a domain-specific language
designed to describe structured algorithms for data-independent kernel functions. The
language is declarative in that it describes the structure of the dataflow and the data lay-
out of a computation, thus enabling algorithm manipulation and structural optimization
at a high level of abstraction. OL is a generalization of SPL [3, 4], which is designed
for linear transforms.

The main building blocks of OL are operators, combined into operator formulas by
higher-order operators. We use OL to describe recursive (divide-and-conquer) algo-
rithms for important kernels as breakdown rules. The combination of these rules then
produces a space of alternative algorithms for this kernel.

Operators. Operators are n-ary functions on vectors: an operator of arity (r, s) con-
sumes r vectors and produces s vectors. An operator can be (multi)linear or not. Linear
operators of arity (1, 1) are precisely linear transforms, i.e., mappings x 7→ Mx, where
M is a fixed matrix. We often refer to linear transforms as matrices. When necessary,
we will denote Am×n→p an operator A going from Cm × Cn into Cp.

Matrices are viewed as vectors stored linearized in memory in row major order. For
example, the operator that transposes an m × n matrix1, denoted by Lmn

n , is of arity
(1, 1). Table 1 defines a set of basic operators that we use.

Kernels. In this paper, a computational kernel is an operator for which we want to
generate fast code. We will use matrix-matrix multiplication and the discrete Fourier
transform as running examples to describe OL concepts. However, we also used OL
to capture other kernels briefly introduced later, namely: circular convolution, sorting
networks, Viterbi decoding, and synthetic aperture radar (SAR) image formation.

1 The transposition operator is often referred to as the stride permutation or corner turn.



We define the matrix-multiplication MMMm,k,n as an operator that consumes two ma-
trices and produces one2:

MMMm,k,n : Rmk × Rkn → Rmn; (A,B) 7→ AB

The discrete Fourier transform DFTn is a linear operator of arity (1, 1) that performs
the following matrix-vector product:

DFTn : Cn → Cn; x 7→ [e−2πikl/n]0≤k,l<nx

Higher-order operators. Higher-order operators are functions on operators. A simple
example is the composition, denoted in standard infix notation by ◦. For instance,

Lmn
n ◦ Pmn

is the arity (2, 1) operator that first multiplies point-wise two matrices of size m × n,
and then transposes the result.

The cross product of two operators applies the first operator to the first input set and the
second operator to the second input set, and then combines the outputs. For example,

Lmn
n × Pmn

is the arity (3, 2) operator that transposes its first argument and multiplies the second
and third argument pointwise, producing two output vectors.

The most important higher order operator in this paper is the tensor product. For linear
operators A,B of arity (1,1) (i.e., matrices), the tensor product corresponds to the tensor
or Kronecker product of matrices:

A⊗B = [ak,lB], A = [ak,l].

An important special case is the tensor product of an identity matrix and an arbitrary
matrix,

In ⊗A =




A
. . .

A


 .

This can be interpreted as applying A to a list of n contiguous subvectors of the input
vector. Conversely, A⊗ In applies A multiple times to subvectors extracted at stride n.

The Kronecker product is known to be useful for concisely describing DFT algorithms
as fully developed by Van Loan [26] and is the key construct in the program generator
Spiral for linear transforms [4]. Its usefulness is in the concise way that it captures
loops, data independence, and parallelism.

We now formally extend the tensor product definition to more general operators, focus-
ing on the case of two operators with arity (2,1); generalization is straightforward.

2 We use this definition for explanation purposes; the MMM required by BLAS [17] has a more
general interface.



name definition

Linear, arity (1,1)
identity In : Cn → Cn; x 7→ x
vector flip Jn : Cn → Cn; (xi) 7→ (xn−i)
transposition of an m× n matrix Lmn

m : Cmn → Cmn; A 7→ AT

matrix M ∈ Cm×n M : Cn → Cm;x 7→ Mx

Bilinear, arity (2,1)
Point-wise product Pn : Cn × Cn → Cn; ((xi), (yi)) 7→ (xiyi)
Scalar product Sn : Cn × Cn → C; ((xi), (yi)) 7→ Σ(xiyi)
Kronecker product Km×n : Cm × Cn → Cmn; ((xi),y)) 7→ (xiy)

Others
Fork Forkn : Cn → Cn × Cn; x 7→ (x,x)

Split Splitn : Cn → Cn/2 × Cn/2; x 7→ (xU ,xL)

Concatenate ⊕n : Cn/2 × Cn/2 → Cn; (xU ,xL) 7→ x
Duplication dupm

n : Cn → Cnm; x 7→ x⊗ Im

Min minn : Cn × Cn → Cn; (x ,y) 7→ (min(xi, yi))
Max maxn : Cn × Cn → Cn; (x ,y) 7→ (max(xi, yi))

Table 1. Definition of basic operators. The operators are assumed to operate on complex numbers
but other base sets are possible. Boldface fonts represent vectors or matrices linearized in mem-
ory. Superscripts U and L represent the upper and lower half of a vector. A vector is sometimes
written as x = (xi) to identify the components.

Let A : Cp ×Cq → Cr be a multi-linear operator and let B : Cm ×Cn → Ck be any
operator. We denote the ith canonical basis vector of Cn with en

i . Then

(A⊗B)(x, y) =
p−1∑

i=0

q−1∑

j=0

A(ep
i , e

q
j)⊗ B((epT

i ⊗ Im)x, (eqT

j ⊗ In)y)

(B⊗A)(x, y) =
p−1∑

i=0

q−1∑

j=0

B((Im ⊗ epT

i )x, (In ⊗ eqT

j )y)⊗A(ep
i , e

q
j)

Intuitively, A describes the coarse structure of the algorithm and captures how to oper-
ate on the chunks of data produced by B. Therefore, the structure of the operations A
and A⊗B is similar. For instance, consider the point-wise product P2 and the tensor
product P2⊗B (we denote with the superscripts U and L the upper and lower halves
of a vector):

(
x0

x1

)
×

(
y0

y1

)
P2−−→

(
x0 · y0

x1 · y1

) (
xU

xL

)
×

(
yU

yL

)
P2⊗B−−−−→

(
B(xU ,yU )
B(xL,yL)

)
.

We show another example by selecting the Kronecker product K2×2 (now viewed as
operator of arity (2, 1) on vectors, see Table 1, not viewed as higher order operator).
Again, the multilinear part of the tensor product describes how blocks are arranged and
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Fig. 3. Blocking matrix multiplication along each one of the three dimensions. For the horizontal
and vertical blocking, the white (black) part of the result is computed by multiplying the white
(black) part of the blocked input with the other, gray, input. For the depth blocking, the result is
computed by multiplying both white parts and both black parts and adding the results.

the non-linear part B prescribes what operations to perform on the blocks:

(
x0

x1

)
×

(
y0

y1

)
K2×2−−−→




x0 · y0

x0 · y1

x1 · y0

x1 · y1




(
xU

xL

)
×

(
yU

yL

)
K2×2⊗B−−−−−−→




B(xU , yU )

B(xU , yL)

B(xL, yU )

B(xL, yL)


.

Comparing these two examples, A = P yields a tensor product in which only corre-
sponding parts of the input vectors are computed on, whereas A = K yields a tensor
product in which all combinations are computed on.

Recursive algorithms as OL breakdown rules. We express recursive algorithms for
kernels as OL equations written as breakdown rules.

The first example we consider is a blocked matrix multiplication. While it does not
improve the arithmetic cost over a naive implementation, blocking increases reuse and
therefore can improve performance [27, 28]. We start with blocking along one dimen-
sion.

Fig. 3a shows a picture of a horizontally blocked matrix. Each part of the result C is
produced by multiplying the corresponding part of A by the whole matrix B. In OL,
this is expressed by a tensor product with a Kronecker product:

MMMm,k,n → Km/mb×1⊗MMMmb,k,n . (1)

Note that the number of blocks m/mb is a degree of freedom under the constraint that
m is divisible by mb

3; in the picture, m/mb is equal to 2 (white block and black block).

Fig. 3b shows a picture of a vertically tiled matrix. The result is computed by multiply-
ing parts of the matrix B with A so the underlying tensor product again uses a Kro-
necker product. However, since matrices are linearized in row-major order, we now need
two additional stages: a pre-processing stage where the parts of B are de-interleaved
and a post-processing stage where the parts of C are re-interleaved4:

MMMm,k,b →
(
Im⊗Ln

n/nb

)◦(MMMm,k,nb
⊗K1×n/nb

)◦(Ikm×(Ik⊗Ln
nb

)
)
. (2)

3 In general, blocks may be of different sizes and thus a more general blocking rule can be
formulated.

4 As we will explain later, stages may be fused during the loop merging optimization, so three
stages do not necessary imply three different passes through the data. In this case, all stages
would merge.



Finally, Fig. 3c shows a picture of a matrix tiled in the “depth”. This time, parts of one
input corresponds to parts of the other input but all results are added together. Therefore,
the corresponding tensor product is not done with a Kronecker product but with a scalar
product:

MMMm,k,n →
(
Sk/kb

⊗MMMm,kb,n

) ◦ (
(Lmk/kb

k/kb
⊗ Ikb

)× Ikn

)
. (3)

The three blocking rules we just described can actually be combined into a single rule
with three degrees of freedom:

MMMm,k,n →(Im/mb
⊗Lmbn/nb

mb
⊗Inb

)◦(MMMm/mb,k/kb,n/nb
⊗MMMmb,kb,nb

)

◦ ((Im/mb
⊗ L

mbk/kb

k/kb
⊗ Ikb

)× (Ik/kb
⊗ L

kbn/nb

n/nb
⊗ Inb

)). (4)

The above rule captures the well-known mathematical fact that a multiplication of size
(m, k, n) can be done by repeatedly using block multiplications of size (mb, kb, nb).
Note that the coarse structure of a blocked matrix multiplication is itself a matrix mul-
tiplication. The fact that blocking can be captured as a tensor product was already ob-
served by [29].

The second example we consider is the famous Cooley-Tukey fast Fourier transform
(FFT) algorithm. It reduces the asymptotic cost of two-power sizes DFTn from O(n2)
to O(n log n).

In this case the OL rule is equivalent to a matrix factorization and takes the same form
as in [26] with the only difference that the matrix product is written as composition (of
linear operators):

DFTn → (DFTk ⊗Im) ◦ diag (ci) ◦ (Ik ⊗DFTm) ◦ Ln
k , n = km. (5)

Here, diag(ci) is a diagonal matrix whose exact form is not of importance here [26].

As depicted in Fig. 4, this algorithm consists of 4 stages: The input vector is first per-
muted by Ln

m, then multiple DFTm are applied to subvectors of the result. The result is
scaled by diag(ci) and finally again multiple DFTk are computed, this time on strided
subvectors.

Note that this algorithm requires the size n to be composite and leaves a degree of
freedom in the integer factors5. Prime sizes require a different algorithm called Rader
FFT [26].

Other examples of algorithms, written as OL rules, are presented in the end of the
section.

Base cases. All recursive algorithms need to be terminated by base cases. In our case,
these correspond to kernel sizes for which the computation is straightforward.

In the blocked multiplication case, the three dimensions can be reduced independently.
Therefore, it is sufficient to know how to handle each one to be able to tackle any size.

5 When the algorithm is applied recursively, this degree of freedom is often called the radix.



DFT4 ⊗I4 diag(ci) I4⊗DFT4 L16
4

DFT16 =

Fig. 4. Representation of the 4 stages of the Cooley-Tukey algorithm. Each frame corresponds to
the matrix associated with one of the 4 operators from the equation (5), specialized with n = 16
and m = 4. Only non-zero values are plotted. Shades of gray represent values that belong to the
same tensor substructure.

In the first two cases, the matrix multiplication degenerates into Kronecker products; in
the last case, it simplifies into a scalar product:

MMMm,1,1 → Km×1, (6)
MMM1,1,n → K1×n, (7)
MMM1,k,1 → Sk. (8)

Note that these three rules are degenerate special cases of the blocking rules (1)–(3).

Other bases cases could be used. For instance, Strassen’s method to multiply 2 × 2
matrices uses only 7 multiplications instead of 8 but requires more additions [29]:

MMM2,2,2 →
[

1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0

]
◦ P7 ◦







1 0 0 1
0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

−1 1 0 0
0 0 1 −1


×




1 0 0 1
1 0 0 0
0 0 1 −1

−1 1 0 0
0 0 0 1
1 0 1 0
0 1 0 1







(9)
Note that, due to the fact that blocking is a tensor product of two MMMs (4), the above
base case can also be used in the structural part of the tensor, yielding a block Strassen
algorithm of general sizes.

For the DFT of two-power sizes, the Cooley-Tukey FFT is sufficient together with a
single base case, the DFT2 nicknamed butterfly:

DFT2 →
[
1 1
1 −1

]
. (10)

Algorithm space. In this paper, we focus on implementing kernels of fixed size. In most
applications that need to be fast, sizes are known at compilation time and therefore
this generative approach is optimal because it removes all overhead. General-size code
can also be generated from our domain specific language but it is mostly a different
problem [30, 31].

We say that a formula is terminated or maximally expanded if it does not contain any
kernel symbols. Using different breakdown rules or different degrees of freedom, the



same kernel can be expanded in different formulas. Each one of them represent a differ-
ent algorithm to compute the kernel. The algorithm space can be explored using empiric
search, strategies such as dynamic programming or machine learning algorithms [4].

For instance, we show here two different expansions of the same kernel, MMM2,2,2.
They are generated by applying rules (1)-(3) and base cases (6)-(8) in two different
orders and simplifying:

MMM2,2,2 →
(
S2⊗K2×2

) ◦ (
L4

2 × I4

)

MMM2,2,2 → ◦((K2×1⊗ S2)⊗K1×2

)
.

We now present additional kernels and algorithms:

Circular convolution. The circular convolution [26] Convn is an arity (2, 1) operator
defined by

Convn : Cn × Cn → Cn; (x,y) 7→ (
Σn−1

j=0 xiyi−j mod n

)
0≤i<n

.

Circular convolution can be computed by going to the spectral domain using DFTs and
inverse DFTs:

Convn → iDFTn ◦Pn ◦(DFTn×DFTn). (11)

Sorting network. A sorting network [32] sorts a vector of length n using a fixed (data-
independent) algorithm. We define the ascending sort kernel χn and the descending sort
kernel Θn:

χn : Nn → Nn; (ai)0≤i<n 7→ (aσ(i))0≤i<n, aσ(j) ≤ aσ(k) for j ≤ k,

Θn : Nn → Nn; (ai)0≤i<n 7→ (aσ(i))0≤i<n, aσ(j) ≥ aσ(k) for j ≤ k.

The bitonic merge operator Mn merges an ascending sorted sequence (ai)0≤i<n/2 and a
descending sorted sequence (bi)0≤i<n/2 into an ascending sorted sequence (ci)0≤i<n:

Mn : Rn → Rn; (ai)0≤i<n/2 ⊕n (bi)0≤i<n/2 7→ (ci)0≤i<n with ci−1 ≤ ci.

The bitonic sorting network is described by mutually recursive breakdown rules:

χn → Mn ◦ ⊕n ◦
(
χn/2 ×Θn/2

) ◦ Splitn (12)

Mn →
(
I2 ⊗Mn/2

) ◦ (
Θ2 ⊗ In/2

)
(13)

Θn → Jn ◦ χn (14)

Finally, sorting the base case is given by

χ2 → ⊕2 ◦ (min1 ×max1) ◦ Fork2 (15)

Viterbi decoding. A Viterbi decoder computes the most likely convolutionally encoded
message that was received over a noisy channel [33]. The computational bottleneck of



the decoding is the forward pass VitK,F where F and K are the frame and constraint
length of the message.

The algorithm structure in OL is:

VitK,F →
F∏

i=1

(
(I2K−2 ⊗j BF−i,j)L2K−1

2K−2

)
. (16)

BF−i,j is called the viterbi butterfly and is a base case. This formula features the in-
dexed composition and the indexed tensor whose subscripts describe the number of the
current iteration. More details are available in [34].

Synthetic Aperture Radar (SAR). The Polar formatting SAR operator SARs,k com-
putes an image from radar pulses sent by a moving sensor [35]. Multiple measurement
are synthesized into one aperture. There are many algorithms and methods to recon-
struct the image, and we focus on an interpolation- and FFT-based variant, called polar
formatting. In this paper we only consider two high-level parameters: a scenario (ge-
ometry) s = (m1, n1,m2, n2), and an interpolator k = (kr, ka), which parameterize
the SAR operator,

SARs,k : Cm1×n1 → Cm2×n2 .

The polar format SAR algorithm is defined by the following breakdown rules:

SARs,k → DFTm2×n2 ◦ 2D-Intpk (17)
2D-Intpk → (Intpn1→n2

ka(i) ⊗iIm2) ◦ (In1 ⊗i Intpm1→m2
kr(i) ) (18)

Intpm→n
(w,k) → Gkm→n

w ◦ iDFTkm ◦Zm→km ◦DFTm (19)

Above, Zm→km describes zero-padding, Gkm→n
w non-uniform data gathering. Details

are not essential for this paper and can be found in [36].

2.2 Abstracting Hardware Into Tags

Our goal is to automatically optimize algorithms by matching them to the target hard-
ware. For portability, the actual computing platforms are abstracted behind simpler de-
scriptions, the hardware paradigms. Paradigms capture essential properties of families
of hardware. When more detailed properties are needed, one can always refer to the
actual platform.

Paradigms. Paradigms are composable coarse structural descriptions of machines.
They establish a set of properties that are common to certain classes of hardware. Actual
platforms and instructions are abstracted behind this common layer. In Fig. 5 we show
two examples: the single instruction multiple data (SIMD) vector instruction paradigm
and the shared memory paradigm.

The SIMD vector paradigm models a class of processors with the following character-
istics:
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Fig. 5. The SIMD vector paradigm and the shared memory paradigm.

– The processor implements a vector register file and standard vector operations that
operate pointwise: addition, multiplication and others. Using vector operations pro-
vide a significant speed-up over scalar operations.

– The most efficient data movement between memory and the vector register file is
through aligned vector loads and stores. Unaligned memory accesses or subvector
memory accesses are more expensive.

– The processor implements shuffle instructions that rearrange data inside a vector
register (intra-register moves).

Most important examples of vector instruction sets are Intel’s SSE family, the newly
announced Intel extensions AVX and the Larrabee GPU native instructions, AMD’s
3DNow! family, Motorola’s AltiVec family including the IBM-developed variants for
the Cell and Power processors.

The shared memory paradigm models a class of multiprocessor systems with the fol-
lowing characteristics:

– The system has multiple processors (or cores) that are all of the same type.

– The processors share a main, directly addressable memory.

– The system has a memory hierarchy and one cache line size is dominant.

Important processors modeled by the shared memory paradigm include Intel’s and
AMD’s multicores and systems built with multiple of them. Non-uniform cache topolo-
gies are also supported as long as there is a shared memory abstraction.

Paradigms can be hierarchically composed. For instance, in single precision floating-
point mode, an Intel Core2 Duo processor is characterized as two-processor shared
memory system (cache line is 64 bytes). Both CPUs are 4-way SIMD vector units.

Besides these two paradigms, our framework experimentally6 supports the follow-
ing other paradigms: 1) distributed memory through message passing, 2) hardware
streaming for FPGA design, 3) software streaming through multibuffering, 4) hardware-
software partitioning, 5) general purpose programming on graphics card, and 6) adap-
tive dynamic voltage and frequency scaling.

Platforms. To ensure best cross-platform portability we capture most of the perfor-
mance-critical structural information at the paradigm level, and avoid utilizing the ac-

6 For the experimental paradigms, we can only generate a limited subset of kernels.



tual platform information within the algorithm manipulation rules. Each generic opera-
tion required by the paradigms has to be implemented as efficiently as possible on the
given platforms.

For instance, we required any hardware covered by the vector paradigm to provide some
instructions for data reorganizations within a vector (called vector shuffles). However,
the actual capabilities of the vector units depend vastly on the vector instruction family
and worse, on the version of the family. Therefore, it is not portable enough to describe
algorithms using directly these instructions and we choose to abstract shuffles at the
paradigm level. By doing that, each platform disposes of its own custom implemen-
tation of the same algorithm. Note that the task of deriving efficient platform-specific
implementations of the shuffles required by the vector paradigm can be also fully auto-
mated, straight from the instructions specification [37].

The actual platform information is also used further down in our program generation
tool chain. In particular, our compiler translating the domain-specific language into C
code relies on it.

Paradigm tags. We denote paradigms using tags which are a name plus some param-
eters. For instance, we describe a shared memory 2-core system with cache line length
of 16 float (64 bytes) by “smp(2, 16)” and a 4-way float vector unit by “vec(4)”.
Tags can be parameterized by symbolic constants: we will use smp(p, µ), and vec(ν)
throughout the paper.

Tags can be concatenated to describe multiple aspects of a target hardware. For instance,
the 2-core shared memory machine above where each core is a 4-way vector unit will
be described by “smp(2, 16), vec(4)”.

When compiling the OL formulas, the paradigms tags are replaced by the actual plat-
form. For instance, the shared memory tag smp(2, 16) leads to multi-threaded code
using OpenMP or pthreads, the vector tag vec(4) creates either Intel’s SSE or Cell SPU
code.

2.3 Common Abstraction: Tagged Operator Language

In this section we show how to build a space of algorithms optimized for a target plat-
form by introducing the paradigm tags into the operator language. The main idea is that
the tags contain meta-information that enables the system to transform algorithms in an
architecture-conscious way. These transformations are performed by adding paradigm-
specific rewriting rules on top of the algorithm breakdown rules. The joint rule set spans
a space of different formulas for a given tagged kernel where all formulas are proven to
have good implementations on the target paradigm and thus platform.

We first discuss the components of the system and then show their interaction with a
few illustrative examples.



Tagged OL formula. A formula A tagged by a tag t, denoted

A︸︷︷︸
t

expresses the fact that A will be structurally optimized for t which can either be a
paradigm or an architecture. We have multiple types of tagged formulas: 1) problem
specifications (tagged kernels), 2) fully expanded expressions (terminated formulas),
3) partially expanded expressions, and 4) base cases. These tagged formulas serve vari-
ous purposes during the algorithm construction process and are crucial to the underlying
rewriting process.

The input to our algorithm construction is a problem specification given by a tagged
kernel. For instance,

MMMm,k,n︸ ︷︷ ︸
smp(p,µ)

asks the system to generate an OL formula for a MMM that is structurally optimized for
a shared memory machine with p processors and cache line length µ. Note that, while
in the paper we always use variables, the actual input is a fixed-size kernel, and thus all
variables have known values.

Any OL expression is a formula. The rewriting process continually changes formulas.
A terminated formula does not have any kernel left, and no further rule is applicable.
Any terminated formula that was derived from a tagged kernel is structurally optimized
for the tag and is guaranteed to map well to the target hardware. Any OL formula that
still contains kernels is only partially expanded and needs further rewriting to obtain an
optimized OL formula.

A base case is a tagged formula that cannot be further broken down by any breakdown
rule and the system has a paradigm-specific (or platform-specific) implementation tem-
plate for the formula. The goal is to have as few base cases per paradigm as possible, but
to support enough cases to be able to implement kernels based on them. Any terminated
formula is built from base cases and OL operations that are compatible with the target
paradigm.

Rewriting system. At the heart of the algorithm construction process is a rewriting
system that starts with a tagged kernel and attempts to rewrite it into a fully expanded
(terminated) tagged OL formula. The system uses pattern matching against the left-hand
side of rewrite rules like (1) to find subexpressions within OL formulas and replaces
them with equivalent new expressions derived from the right-hand side of the rule. It
selects one of the applicable rules and chooses a degree of freedom if the rule has one.
The system keeps track of the choices to be able to backtrack and pick different rules
or parameters in case the current choice is not leading to a terminated formula. The
process is very similar to Prolog’s computation of proofs.

The system uses a combined rule set that contains algorithm breakdown rules and base
cases (1)–(19), paradigm base cases (20)–(24), and paradigm-specific manipulation



rules (25)–(33). The breakdown rules are described in Section 2.1. In the remainder of
the section we will describe the remaining two rule classes in more detail.

Base cases. Tagged base cases are OL formulas that have a known good implementation
on every platforms covered by the paradigm. Every formula built only from these base
cases is guaranteed to perform well.

We now discuss the base cases for the shared memory paradigm, expressed by the tag
smp(p, µ). The tag states that our target system has p processors and cache length of µ.
This information is used to obtain load balanced, false-sharing free base cases [5]. OL
operations in base cases are also tagged to mark the base cases as fully expanded. In the
shared memory case we introduce three new tagged operators, ⊗‖, ⊗̄,

⊕
||, which have

the same mathematical meaning as their un-tagged counterparts. The following linear
operators are shared memory base cases:

Ip ⊗‖ Amµ→nµ,

p−1⊕

i=0

‖Ai
mµ→nµ, M⊗̄Iµ with M a permutation matrix (20)

The first two expression encodes embarrassingly parallel, load-balanced computations
that distribute the data so that no cache line is shared by multiple processors. The third
expression encodes data transfer that occurs on a cache line granularity, also avoiding
false sharing. The following non-linear arity (2,1) operators are shared memory base
cases. They generalize the idea of Ip ⊗‖ Amµ→nµ in (20),

Pp⊗‖Akµ×mµ→nµ, Kq×r ⊗‖Akµ×mµ→nµ where qr = p. (21)

Building on these base cases we can build fully optimized (i.e., terminated) tagged OL
formulas using OL operations. For instance, any formula A ◦ B where A and B are
fully optimized is also fully optimized. Similarly, × allows to construct higher-arity
operators that are still terminated. For instance,

(M⊗̄Iµ)× (N⊗̄Iµ), M, N are permutation matrices (22)

produces terminated formulas. Not all OL operations can be used to build larger termi-
nated OL formulas from smaller ones. For instance, if A is an arity (1,1) shared memory
base case, then in general A⊗ Ik is no shared memory base case.

Next we discuss the base cases for the SIMD vector paradigm. The tag for the SIMD
vectorization paradigm is vec(ν), and implies ν-way vector units which require all
memory access operations to be naturally aligned vector loads or stores. Similar to the
shared memory base cases, we introduce two special markers to denote base cases. The
operator ⊗̂ denotes a basic block that can be implemented using solely vector arith-
metic and vector memory access. Furthermore, the vector paradigm requires a set of
base cases that have architecture-dependent implementations but can be implemented
well on all architectures described by the SIMD vector paradigm. The exact implemen-
tation of these base cases is part of the architecture description. We limit our discussion
to the Intel SSE instruction set, and mark such base with the following symbol,

A︸︷︷︸
base(sse)

,



and imply the vector length ν = 4. Other architectures or vector lengths would require
similarly marked base cases with implementations stored in the architecture definition
data base.

The base case library contains the implementation descriptions for the following linear
arity (1,1) operators:

Am→n⊗̂Iν , Lν2

ν︸︷︷︸
base(sse)

, diag(ci)︸ ︷︷ ︸
base(sse)

. (23)

The formula Am→n⊗̂Iν is of special importance, as it can be implemented solely using
vector instructions, independently of Am→n [38]. The generalization of the Am→n⊗̂Iν

to arity (2,1) is given by
Ak×m→n⊗̂Pν . (24)

Similar to the shared memory base cases, some OL operations allow to construct larger
fully optimized (terminated) OL formulas from smaller ones. For instance, if A and B
are terminated, then A ◦B is terminated. In addition, if A is terminated, then In ⊗A is
terminated as well.

Paradigm-specific rewrite rules. Our rewriting system employs paradigm-specific
rewriting rules to extract paradigm-specific base cases and ultimately obtain a fully
optimized (terminated) OL formula. These rules are annotated mathematical identities,
which allow for proving correctness of formula transformations. The linear arity (1,1)
rules are derived from matrix identities [26], and non-linear and higher arity identities
are based on generalizations of these identities.

Table 2 summarizes our shared memory rewrite rules. Using (25)–(29), the system
transforms formulas into OL expressions that are built from the base cases defined in
(20)–(21). Some of the arity (1,1) identities are taken from [5].

(
Ik ⊗ Lmn

n

)
︸ ︷︷ ︸

smp(p,µ)

◦ Lkmn
km︸ ︷︷ ︸

smp(p,µ)

→(
Lkn

k ⊗ Im/µ

)⊗̄Iµ (25)

Lkmn
n︸ ︷︷ ︸

smp(p,µ)

◦ (
Ik ⊗ Lmn

m

)
︸ ︷︷ ︸

smp(p,µ)

→(
Lkn

n ⊗ Im/µ

)⊗̄Iµ (26)

Ak×m→n⊗K1×p︸ ︷︷ ︸
smp(p,µ)

→ Lpn
n︸︷︷︸

smp(p,µ)

◦( K1×p⊗‖Ak×m→n

) ◦ (
Ik × Lpm

p

)
︸ ︷︷ ︸

smp(p,µ)

(27)

(
A×B

)
︸ ︷︷ ︸
smp(p,µ)

◦ (
C×D

)
︸ ︷︷ ︸
smp(p,µ)

→ (
A ◦C

)
︸ ︷︷ ︸
smp(p,µ)

× (
B ◦D

)
︸ ︷︷ ︸
smp(p,µ)

(if arities are compatible) (28)

A ◦B︸ ︷︷ ︸
smp(p,µ)

→ A︸︷︷︸
smp(p,µ)

◦ B︸︷︷︸
smp(p,µ)

(29)

Table 2. OL rewriting rules for SMP parallelization.



Table 3 summarizes SIMD vectorization-specific rewriting rules. Some of the arity (1,1)
identities can be found in [6]. These rules translate unterminated OL formulas into
formulas built from SIMD base cases.

(
An→n ⊗ Im︸ ︷︷ ︸

vec(ν)

) → (
An→n ⊗ Im/ν

)⊗̂Iν (30)

(
Im ⊗An→n

) ◦ Lmn
m︸ ︷︷ ︸

vec(ν)

→
(
Im/ν ⊗ Lnν

ν︸︷︷︸
vec(ν)

◦(An→n⊗̂Iν

)) ◦ (
L

mn/ν

m/ν ⊗̂Iν

)
(31)

Lnν
n︸︷︷︸

vec(ν)

→ (
In/ν ⊗ Lν2

ν︸︷︷︸
base(sse)

) ◦ (
Ln

n/ν⊗̂Iν

)
(32)

Ak×m→n ⊗K1×ν︸ ︷︷ ︸
vec(ν)

→ (Ak×m→n ⊗ Pν) ◦ (dupν
k ×Imν) (33)

Table 3. OL vectorization rules.

Examples. We now show the result of the rewriting process for shared memory and
SIMD vectorization, for DFT and MMM. We specify a DFTmn kernel tagged with
the SIMD vector tag vec(ν) to instruct the system to produce a SIMD vectorized fully
expanded OL formula; m and n are fixed numbers. The system applies the breakdown
rules (5) and together with the SIMD vector-specific rewriting rules (30)–(33). The
rewriting process yields

DFTmn︸ ︷︷ ︸
vec(ν)

→ (
(DFTm⊗In/ν)⊗̂Iν

) ◦ diag(ci)︸ ︷︷ ︸
base(sse)

◦ (
Im/ν ⊗ (In/ν ⊗ Lν2

ν︸︷︷︸
base(sse)

) ◦ (Ln
n/ν⊗̂Iν) ◦ (DFTn ⊗̂Iν)

) ◦ (
L

mn/ν
m/ν ⊗̂Iν

)
,

which will be terminated independently of how DFTm and DFTn are further expanded
by the rewriting system. A detailed earlier (SPL-based) version of the rewriting process
can be found in [6].

Similarly, we tag DFTmn with smp(p, µ) to instruct the rewriting system to produce
a DFT OL formula that is fully optimized for the shared memory paradigm. The al-
gorithm breakdown rules (5) are applied together with the paradigm-specific rewriting
rules, (25)–(29). The rewriting process yields

DFTmn︸ ︷︷ ︸
smp(p,µ)

→ (
(Lmp

m ⊗ In/pµ)⊗̄Iµ

)◦(
Ip⊗‖ (DFTm⊗In/p)

)◦(
(Lmp

p ⊗ In/pµ)⊗̄Iµ

)

◦
(

p−1⊕

i=0

‖Di
m,n

)
◦
(
Ip⊗‖ (Im/p⊗DFTn)

)◦(
Ip⊗‖L

mn/p
m/p

)◦(
(Lpn

p ⊗Im/pµ)⊗̄Iµ

)
.



Again, the above formula is terminated independently of how DFTm and DFTn are
further expanded by the rewriting system. A detailed earlier (SPL-based) version of the
rewriting process can be found in [5].

As next example we show the shared memory optimization of MMM. The kernel spec-
ification is given by MMMm,k,n tagged by smp(p, µ). The algorithm breakdown rules
is (4) and the shared memory-specific rewriting rules are again (25)–(29). The rewriting
process finds the following result

MMMm,k,n︸ ︷︷ ︸
smp(p,µ)

→ Kp×1⊗‖MMMm/p,k,n,

which cuts the first matrix horizontally and distributes slices among different cores. The
rewriting process also discovers automatically that it could distribute jobs by splitting
the second matrix vertically:

MMMm,k,n︸ ︷︷ ︸
smp(p,µ)

→ (
(Lmp

m ⊗ In/(pµ))⊗̄Iµ

)

◦ (
K1×p⊗‖MMMm,k,n/p

) ◦ (
(Ikm/µ⊗̄Iµ)× ((Lkp

p ⊗ In/(pµ))⊗̄Iµ)
)
.

Our final example is the ν-way vectorization of a MMMm,k,n. Using the matrix block-
ing rule (4) and the vector rules (30)–(33), the rewriting system yields

MMMm,k,n︸ ︷︷ ︸
vec(ν)

→ (
MMMm,k,n/ν ⊗̂Pν

) ◦ (dupν
mk ×Ikn).

3 Generating Programs for OL Formulas

In the last section we explained how Spiral constructs an algorithm that solves the spec-
ified problem on the specified hardware. The output is an OL formula that encodes the
data flow, data layout, and implementation choices. In this section we describe how
Spiral compiles this OL formula to a target program, usually C with library calls or
pragmas.

Formula rewriting. An OL formula encodes the data flow of an algorithm and the
data layout. It does not make explicit any control flow and loops. The intermediate
representation Σ-OL (which extends Σ-SPL [39] to OL and is beyond the scope of this
paper) makes loops explicit while still being a declarative mathematical domain-specific
language. Rewriting of Σ-OL formulas allows in particular to fuse data permutations
inserted by paradigm-specific rewriting with neighboring looped computational kernels.
The result is domain-specific loop merging, that is beyond the capabilities of traditional
compilers but essential for achieving high performance.

Σ-OL formulas are still only parameterized by paradigms, not actual architectures. This
provides portability of domain-specific loop optimizations within a paradigm, as rewrit-
ing rules are at least reused for all architectures of a paradigm.



Σ-OL compiler. The final Σ-OL expression is a declarative representation of a loop-
based program that implements the algorithm on the chosen hardware. The Σ-OL com-
piler (an extension of the SPL compiler [3] and the Σ-SPL compiler [39]) translates
this expression into an internal code representation (resembling a C program), using
rules such as the ones in Table 4. The resulting code is further optimized using standard
compiler optimizations like unrolling, common subexpression elimination, strength re-
duction, and constant propagation.

Base case library. During compilation, paradigm-specific constructs are fetched from
the platform-specific base case library. After inclusion in the algorithm, a platform-
specific strength reduction pass is performed. Details on the base case library can be
found in [38, 5, 37].

Unparser. In a final step, the internal code representation is outputted as a C program
with library calls and macros. The platform description carries the information of how
to unparse special instructions and how to invoke the requisite libraries (for instance
pthreads). Code can be easily retargeted to different libraries by simply using a different
unparser. For instance, an OpenMP parallel program and a pthreads parallel program
have the same internal representation and the target threading facility is only committed
to when unparsing the program.

4 Experimental Results

We implement the language and rewriting system inside GAP [40] and evaluate the code
generator on the MMM, DFT, SAR imaging and Viterbi decoding problems. In each
case, we generate optimized code and compare it to the best available implementations,
which are often optimized in assembly. As we detail below, we achieve comparable
performance on all scenarios. In some cases, human developers cannot spend the time
to support all functionalities on all platforms. In these cases, having a code generator
based approach is a huge win.

MMM. We evaluate our MMM code on two platforms: an Intel Xeon (Fig. 6a) and
an IBM Cell BE (Fig. 6b). On the Intel platform, we compare the generated vectorized
single threaded code to the Intel Math Kernel Library (MKL) 10.0 and the Goto BLAS
1.26 which are both hand-optimized in assembly [41, 42]. On the Cell, we compare
the generated code that runs on a single SPU to the assembly code provided by D.
Hackenberg [43]. Due to restrictions on the local store, [43] only provides code for
sizes that are multiple of 64.

On both platforms, the generated vectorized code achieves 70% of the theoretical peak
performance and is comparable to or slightly slower than hand-optimized code. The
Cell platform offers a demonstration of the versatility of a code generator: due to the
particularity of this architecture, matrix multiplications of sizes not multiple of 64 are
simply not provided by high-performance experts; a code generator allows us to support
any sizes that the user may be interested in.



operator formula code

operators
r = Pn(x,y) for (i=0;i<n;i++)

r[i] = x[i]*y[i];

r = Sn(x,y) r=0;
for (i=0;i<n;i++)

r += x[i]*y[i];

r = Km×n(x,y) for (i=0;i<m;i++)
for (j=0;j<n;j++)

r[i*m+j] = x[i]*y[j];

r = Lmn
m (x) for (i=0;i<m;i++)

for (j=0;j<n;j++)
r[i+m*j] = x[n*i+j];

higher-order operators
r = (A ◦B)(x) t = B(x);

r = A(t);

(r, s) = (A×B)(x,y) r = A(x);
s = B(y);

r = (Im ⊗An)(x) for (i=0;i<m;i++)
r[in:1:(i+1)n-1]= A(x[in:1:(i+1)n-1]);

r = (Am ⊗ In)(x) for (i=0;i<m;i++)
r[i:n:i+n(m-1)]= A(x[i:n:i+n(m-1)]);

r = (Pp⊗Am×n→k)(x,y) for (i=0;i<p;i++)
r[ik:1:(i+1)k-1] =

A(x[i*m:1:(i+1)m-1],
r[i*n:1:(i+1)n-1]);

r = (Am×n→k ⊗ Pp)(x,y) for (i=0;i<p;i++)
r[i:k:i+k(p-1))] =

A(x[i:m:i+m(p-1))]
r[i:n:i+n(p-1)]);

r = (Kp×q ⊗Am×n→k)(x,y) for (i=0;i<p;i++)
for (j=0;j<q;j++)

r[(i*p+j)k:1:(i*p+j+1)k-1] =
A(x[i*m:1:(i+1)m-1],

r[j*n:1:(j+1)n-1]);

r = (Am×n→k ⊗Kp×q)(x,y) for (i=0;i<p;i++)
for (j=0;j<q;j++)

r[i*p+j:p*q:i*p+j+p*q*(k-1))] =
A(x[i:p:i+p(m-1))],

r[j:q:j+q(n-1)]);

Table 4. Translating operator formulas to code. x and y denote the input and r and s the output
vectors. The subscripts of A and B specify the signatures of the operators when they are relevant.
We use Matlab-like notation: x[b:s:e] denotes the subvector of x starting at b, ending at e
and extracted at stride s.
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Fig. 6. Matrix Multiplication on two different platforms. All implementations are vectorized and
single-threaded.
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Fig. 7. Discrete Fourier transform (DFT) performance comparison between our generated code,
Intel Performance Primitives (IPP) and FFTW. All implementations are vectorized and multi-
threaded.

DFT. We evaluate our generated kernels for the DFT against the Intel Performance
Primitives (IPP) and the FFTW library [1, 19]. While IPP is optimized in assembly,
FFTW’s approach shows some similarities with ours since small sizes are automatically
generated.

Fig. 7 shows that our performance is comparable or better than both libraries for a
standard Intel platform. All libraries are vectorized and multi-threaded.

SAR. We evaluate the generated SAR code on an Intel Core2 Quad server (QX9650).
We observe a steady performance of 34 Gigaflops/sec for 16 and 100 Megapixel SAR
images with runtimes of 0.6 and 4.45 seconds respectively. This performance num-
bers are comparable with [44] who developed hand-optimized assembly code for a Cell
Blade.
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Fig. 8. Performance comparison between generated Viterbi decoders and hand-optimized de-
coders from Karn’s Forward Error Correction (FEC) library. For each of the 4 different con-
volutional codes supported by the FEC library, Karn provides up to 4 implementations that vary
in vector length. All performances are normalized to the scalar performance of the generated
decoder.

Viterbi decoding. We evaluate our generated decoders against Karn’s hand-written de-
coders [45]. Karn’s forward error correction software supports four different common
convolutional codes and four different vector lengths. For each pair of code and vector
length, the forward pass is written and optimized in assembly. Due to the amount of
work required, some combinations are not provided by the library.

In Fig. 8, we generated an optimized decoder for each possible combination and com-
pared their performances to Karn’s hand-optimized implementations. Analysis of the
plot shows that our generated decoders have roughly the same performance than the
hand-optimized assembly code from [45]. However, due to the code generator approach,
we cover the full cross-product of codes and architectures. In particular, note that we
are not limited to these four codes. An online interface is provided to generate decoders
on demand [34, 46].

5 Conclusion

In this paper we presented OL, a framework to automatically generate high-performan-
ce implementations for a set of important kernels. Our approach aims at fully automat-
ing the implementation process, from algorithm selection and manipulation down to
compiler-domain optimizations. It builds on and extends the library generation system
for linear transforms, Spiral, to support multi-input/output and nonlinear kernels. The
performance of the implementations our system produces rivals expertly hand-tuned
implementations for the considered kernels. The approach is currently restricted to ker-
nels with data-independent control flow, and we currently support limited functionality
from a broad selection of domains. We plan to extend the approach to more kernels and
domains in future work.
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