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Abstract
A critical optimization in the domain of linear signal transforms,
such as the discrete Fourier transform (DFT), is loop merging,
which increases data locality and reuse and thus performance. In
particular, this includes the conversion of shuffle operations into
array reindexings. To date, loop merging is well understood only
for the DFT, and only for Cooley-Tukey FFT based algorithms,
which excludes DFT sizes divisible by large primes. In this paper,
we present a formal loop merging framework for general signal
transforms and its implementation within the SPIRAL code gener-
ator. The framework consists of Σ-SPL, a mathematical language
to express loops and index mappings; a rewriting system to merge
loops in Σ-SPL; and a compiler that translates Σ-SPL into code.
We apply the framework to DFT sizes that cannot be handled us-
ing only the Cooley-Tukey FFT and compare our method to FFTW
3.0.1 and the vendor library Intel MKL 7.2.1. Compared to FFTW
our generated code is a factor of 2–4 faster under equal implemen-
tation conditions (same algorithms, same unrolling threshold). For
some sizes we show a speed-up of a factor of 9 using Bluestein’s
algorithm. Further, we give a detailed comparison against the Intel
vendor library MKL; our generated code is between 2 times faster
and 4.5 times slower.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, optimization, code generation;
F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems—computation of transforms; C.3 [Spe-
cial Purpose and Application-Based Systems]—signal processing
systems

General Terms Algorithms, design, languages, measurement,
performance, theory

Keywords Linear signal transform, discrete Fourier transform,
DFT, loop optimization, domain-specific language, automatic per-
formance tuning

1. Introduction
Linear digital signal processing (DSP) transforms are the compu-
tational workhorses in DSP, occurring in practically every DSP ap-
plication or standard. The most prominent example is the discrete
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Fourier transform (DFT), which, beyond DSP, is arguably among
the most important numerical algorithms used in science and en-
gineering. Typically, DSP transforms are used in applications that
process large data sets or operate under realtime constraints, which
poses the need for very fast software implementations.

It is meanwhile well-known that the design and implementation
of highest performance numerical kernels for modern computers
is a very difficult problem due to deep memory hierarchies, com-
plex microarchitectures, and special instruction sets. Exacerbat-
ing the problem, optimal code is often platform-dependent, which
increases the development cost considerably. DSP transforms are
no exception. On the positive side, fast algorithms for DSP trans-
forms are “divide-and-conquer,” which generally produces a struc-
ture well-suited for good performance on memory hierarchies. On
the negative side, the conquer step in these algorithms is iterative,
i.e., requires multiple passes through the data. In particular, some
of these steps are complicated shuffle operations, which can de-
teriorate performance considerably. As a consequence, one of the
keys to obtaining high performance is to merge these iterative steps
to improve data locality and reuse. In particular, the shuffle opera-
tions should not be performed explicitly, but converted into a rein-
dexing in the subsequent computation. For fully unrolled code this
optimization is straightforward, since the array accesses can be pre-
computed and inlined. In contrast, merging shuffle operations with
loops is very difficult.

The general problem of loop merging [1, 6] is NP-complete.
Further, loop merging requires array dependence information, for
which the most general methods, like [7], achieve exact results only
if the array indices are affine expressions, and even for this class the
analysis has exponential worst-case runtime. Since DFT algorithms
other than the Cooley-Tukey fast Fourier transform (FFT) use non-
affine index mappings, standard array dependence tests do not
work.

In the domain of signal transforms, the problem of loop merg-
ing has been solved to date only for the DFT and only for one DFT
method: the Cooley-Tukey FFT (see [10]). Examples include the
fastest available DFT software provided by vendor libraries1, by
the adaptable library FFTW [2, 4], and by the code generator SPI-
RAL [9, 8]. Consequently, these libraries achieve very high per-
formance for DFT sizes that factor into very small prime numbers,
but, as we demonstrate in this paper, can be far suboptimal for other
sizes.

Contribution of this paper. This paper addresses the problem
of automatically fusing loops and shuffle operations for arbitrary
linear DSP transform algorithms. We propose a domain-specific
approach consisting of three main components:

• A new language to symbolically represent transform algorithms
called Σ-SPL. Σ-SPL is an extension to SPL [11], which is at

1 For vendor libraries we can only speculate which optimizations are used,
since the source code is not available.



the core of the original SPIRAL system. As SPL, Σ-SPL is
of mathematical nature, but makes loops and index mappings
explicit. Σ-SPL borrows concepts from the early paper [5] on
FFT manipulations.

• A rule-based framework to perform loop fusions on the Σ-SPL
representation of a transform algorithm.

• A compiler that translates Σ-SPL into code.

Next, we apply this framework to the DFT and the four most
important FFT methods and identify the necessary optimization
rules specific to these algorithms. For the Cooley-Tukey FFT, the
optimizations are equivalent to those performed in FFTW or in the
original SPIRAL. For other FFT algorithms, namely the prime-
factor FFT, Rader FFT, Bluestein FFT, or their combinations, the
optimizations are novel.

We implemented our approach as a rewriting system within the
SPIRAL code generator, which enables us to automatically perform
these optimization as part of the code generation process. For DFT
sizes that cannot be exclusively computed using the Cooley-Tukey
FFT, we generate DFT code that is 2–4 times faster than FFTW on
a Pentium 4 and, for some sizes, up to a factor of 9 when using
Bluestein’s FFT algorithm, which is not used in the current version
of FFTW. We also provide a detailed comparison against the Intel
vendor library MKL, for which the source code is not available.
Here we observe anything from a speed-up of a factor of 2 to a
slow-down of a factor of 4.5.

Organization of this paper. In Section 2 we review the four
most important recursive DFT algorithms, discuss the problems
in implementing them efficiently and review FFTW and SPIRAL.
Section 3 motivates and describes the new language Σ-SPL. Sec-
tion 4 describes the actual loop optimizations performed in Σ-SPL,
including examples, and explains the implementation as a rewrit-
ing system within SPIRAL. In Section 5 we show benchmarks of
SPIRAL generated DFT code using the new optimizations against
FFTW and the Intel MKL. Finally, we offer conclusions in Sec-
tion 6.

2. Background
In this section we first introduce the four most important recursive
methods for computing the DFT and discuss the problems that arise
in their efficient implementation. Then we explain how in FFTW
and SPIRAL only one of these methods, namely the Cooley-Tukey
FFT, is implemented efficiently. The other three recursions, which
are necessary to handle all DFT sizes, are either implemented far
suboptimally or not at all. Further, the optimization process for
these algorithms is not even theoretically well understood. In this
paper we solve this problem to generate code that is considerably
faster compared to previous methods.

DFT. The DFT is a matrix-vector multiplication. Namely, if x is
a complex input vector of length n, then the DFT of x is the vector
y = DFTn x, where DFTn is the n × n matrix

DFTn = [ωk`
n ]0≤k,`<n, ωn = e

−2πi/n
.

Recursive FFTs: Overview. Direct computation of the DFT
requires O(n2) operations. However, several recursive methods,
called fast Fourier transforms (FFTs), are available that reduce
the cost to O(n log(n)). We consider only the four most impor-
tant FFTs, which are called Cooley-Tukey, prime-factor (or Good-
Thomas), Rader, and Bluestein. Each of these FFTs reduces the
problem of computing a DFT of size n to computing several DFTs
of different (and with one exception smaller) sizes. The applicabil-
ity of each FFT depends on the size n:

• Cooley-Tukey requires that n = km factors and reduces the
DFTn to m DFTk’s and k DFTm’s.

• Prime-factor requires that n = km factors and that the factors
are coprime, gcd(k, m) = 1. Similar to Cooley-Tukey, the
DFTn is then computed using m DFTk’s and k DFTm’s.

• Rader requires that n = p is prime and reduces the DFTp to 2
DFTp−1’s.

• Bluestein is applicable to all sizes and computes a DFTn using
2 DFTm’s of larger size m ≥ 2n − 1.

Besides the recursion, the first three FFTs involve shuffle opera-
tions or permutations of the following forms. For Cooley-Tukey
(n = km),

i 7→ ki mod (n − 1), (1)
which can also be written without the modulo operation using two
arguments i and j in the affine form

jm + i 7→ ik + j. (2)

For Good-Thomas and Rader, respectively,

i 7→ (kb i
k
c + m(i mod k)) mod n, (3)

i 7→ g
i mod n, (4)

and their inverses, where g is a suitably chosen, fixed integer.
For high performance it is crucial to handle these permuta-

tions, and their combinations as a DFT is computed recursively,
efficiently. This means that ideally the permutations should not be
performed explicitly, but translated into an array reindexing in the
subsequent computation. For fully unrolled code this optimization
is rather straightforward, since all array accesses can be precom-
puted and inlined. This is done, for example, in FFTW’s codelet
generator [3]. For loop optimizations, the “affine” permutation (1)
or (2) has been studied extensively in the compiler literature and
is well understood in the context of FFTs, whereas the more ex-
pensive prime-factor and Rader FFT mappings (3) and (4) have not
received much attention. One main contribution of this paper is to
identify the compiler transformations necessary to optimize these
permutations. These transformations are not performed on the ac-
tual code, where they would be prohibitively expensive, but at a
higher level of abstraction provided by Σ-SPL introduced in this
paper.

Recursive FFTs: Details. We provide the explicit form of the
four FFTs mentioned above similar to [10] in the form of structured
sparse matrix factorization using the mathematical language called
SPL in SPIRAL.

In the following, we use In to denote an n × n identity matrix,
and

A ⊕ B =

[

A
B

]

, A ⊗ B = [ak`B], A = [ak`],

for the direct sum and tensor product of matrices, respectively.
The Cooley-Tukey, prime-factor, Rader, and Bluestein FFT, re-

spectively, can be written as the following structured factorizations
of the DFT matrix.

DFTn = (DFTk ⊗ Im)T n
m(Ik ⊗DFTm)Ln

k (5)

DFTn = V
−1

n (DFTk ⊗ Im)(Ik ⊗DFTm)Vn, (6)

DFTn = W
−1
n (I1⊕DFTp−1)En(I1⊕DFTp−1)Wn, (7)

DFTn = B
′
nDm DFTm D

′
m DFTm D

′′
mBn. (8)

Here, L, V, W are the permutation matrices corresponding to
the permutations in (1), (3), (4), respectively; T, D, D′, D′′ are
diagonal matrices, E is “almost” diagonal with 2 additional off-
diagonal entries, Bn appends m − n zeros to the input vector, and
B′

n extracts the first n entries of a length m vector.
As said above, the first three recursions break down the DFT

into smaller DFTs. The last, Bluestein, converts a DFT of size n
into 2 larger DFTs of size m ≥ 2n − 1. Usually, m is chosen in



this case as a 2-power for fastest computation. This method does
not involve shuffle operations and can serve as a fallback solution
if the other methods become too slow.

We discuss Cooley-Tukey as an example. If n = km, then
the DFT in (5) is computed in four steps (corresponding to the
four factors in (5)). First, the input vector is shuffled according
to the permutation matrix Ln

k ; then, n DFTm’s are applied to
subvectors of length m; then, the vector is scaled with T n

k ; and,
finally, m DFTk’s are applied at stride m. This straightforward
implementation would produce four loops and four passes through
the data and leads to suboptimal performance.

The key to obtaining high performance with the above recur-
sions is to reduce the number of passes through the data by fusing
the loops to increase locality. In particular, the scaling steps (di-
agonal matrices) have to be fused with the adjacent loops arising
from the tensor products, and the permutations should not be per-
formed explicitly, but ideally be converted into reindexings in the
subsequent loop. Since the above FFTs are applied recursively, di-
agonals and permutations occur at different levels of nesting, which
makes these fusions a difficult problem. To date this problem has
been solved only for algorithms that arise by exclusively using (5),
for example, in FFTW and SPIRAL as discussed next. For other
algorithms based on combinations of the other FFTs we present a
solution in this paper.

FFTW. FFTW is a self-adaptable FFT library. For small DFT
sizes, FFTW uses pregenerated, highly optimized, fully unrolled
“codelets” [3]. The codelet generator uses a variety of FFT algo-
rithms including Cooley-Tukey, prime-factor, and Rader. For large
sizes, and thus loop code, FFTW has a built-in degree of freedom
in recursing using Cooley-Tukey. A heuristic search selects at run-
time the best recursion strategy (or algorithm), called “plan,” for the
given platform. The plan can then be used as many times as desired.
FFTW implements Cooley-Tukey very efficiently. The permutation
L is never explicitly performed, but passed as an argument in the
recursion. This is possible, because of special properties of L. Simi-
larly, scaling by T (the twiddle factors) is not performed as an extra
step, but, also is passed down the recursion and finally performed
by special “twiddle codelets.” Thus, in a sense, the optimization
of (5) is hardcoded into the infrastructure of FFTW. Besides (5),
FFTW supports also (7), but there the permutations are performed
explicitly, which results in poor performance. The other two FFTs
are not supported.

SPIRAL. SPIRAL (see Figure 1) generates code for signal
transforms of fixed size from scratch. In SPIRAL, the DFT re-
cursions are called “rules” and included in the system in the form
shown in (5)–(8). For a user-specified transform and size, SPIRAL
applies these rules recursively until all transforms are of size 2 to
generate one out of many possible algorithms, mathematically rep-
resented as SPL formula. The formula may then be optimized using
formula manipulation. Next, the SPL compiler [11] translates the
formula into optimized C code, using a template mechanism. The
C code, in turn, is compiled and its runtime is measured. Based on
the runtime, in a feedback loop, a search (or learning) engine trig-
gers the generation of different algorithms. Iteration of this loop
leads to a fast, platform-adapted implementation. For (5), SPIRAL
performs optimizations equivalent to FFTW. Namely, when trans-
lating an SPL formula based on (5) into code, the SPL compiler
fuses the twiddle factors and the stride permutation matrix a special
purpose template for SPL expressions of the form (Ik ⊗Am)Lkm

k

and (Ak ⊗ Im)T km
m . In other words, this optimization is hardcoded

specifically for Cooley-Tukey based algorithms.
Summary. In summary, both FFTW and SPIRAL handle (5) as

a special case, an approach that is neither easily extensible, nor one
that gives any insight into how to optimize the other FFT recursions
or other transforms. Since in SPIRAL the goal is to generate very
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Figure 1. SPIRAL’s architecture.

fast code for all transform and all sizes, a new framework is needed,
complementing but extending the original SPL and SPL compiler,
to perform the necessary optimizations. This is the motivation for
Σ-SPL presented in the next section. We then apply this framework
to the FFTs (6), (7), and (8), to generate fast code for all DFT sizes.

3. The Σ-SPL Language
In this section we define Σ-SPL after presenting the motivation and
a short example.

The original SPL language used in SPIRAL describes transform
algorithms as sparse structured matrix factorizations built from
small matrices, permutation matrices, diagonal matrices, tensor
products, and other constructs. SPL captures the data flow of an
algorithm. However, all data reorganization steps are described
explicitly as stages that perform passes through the data.

As an example, consider the SPL formula

(Im ⊗An)P, P a permutation matrix, (9)

which is produced by the recursions (5) and (6). This formula de-
scribes two passes through the data. First, the data vector is shuffled
according to P using a loop with mn iterations that just moves data.
Second, a loop with m iterations applies the computational kernel
An to subvectors of size n. One of our goals is to merge these two
loops into one loop that implements the data reorganization given
by P as readdressing of the input of the computational kernel An.
This optimization cannot be expressed in SPL and is impractical,
if not unfeasible, to perform on the corresponding C code. This is
the motivation for introducing Σ-SPL, which makes the index map-
pings explicit and enables this optimization. We briefly show how
this optimization is performed on (9) before we define Σ-SPL in
detail.

Translating (9) into Σ-SPL yields
(

m−1
∑

j=0

Swj
An Grj

)

perm
(

p
)

, (10)

where the so-called gather matrix Grj
denotes the reading or load-

ing of n input values according to the index mapping function rj ,
and the scatter matrix Swj

denotes the writing or storing of n output



values according to the index mapping function wj . Observe also
that the permutation matrix is now expressed in terms of its defining
permutation p. Intuitively, the permutation can be incorporated di-
rectly into the gather matrix by changing the gather index mapping.
Below we give the optimized Σ-SPL formula for (9) with merged
loops, obtained by applying a rewrite rule:

m−1
∑

j=0

(

Swj
An Gp◦rj

)

. (11)

The permutation was fused into the gather operation to yield the
new gather index mapping p ◦ rj (“◦” is the composition of func-
tions).

For efficient computation, it is further crucial to simplify the
composed index mapping functions resulting from loop merging.
This is also done by identifying a small set of rewrite rules that
perform this simplification for the considered domain of transform
algorithms. Identifying these rules for the FFTs (5)–(8) is one of
the contributions of this paper.

To make explicit which loops in SPL formulas persist and which
are merged, we divide the SPL constructs into two categories:
skeleton and decoration.

Skeleton. The main loop structure of an SPL formula is defined
by its skeleton. Examples of skeleton objects include direct sums
and tensor products with identity matrices:

A ⊕ B, A ⊗ In, and In ⊗A.

When an SPL formula is mapped into Σ-SPL, skeleton objects are
translated into iterative sums including gather/scatter operations,
which makes the loop structure and the index mappings explicit (as
in (10)). In our motivating example (9) the skeleton is Im ⊗An.

Decoration. Permutation matrices and diagonal matrices are
called decorations. We introduce the container constructs perm

(

p
)

and diag
(

f
)

to express loops originating from decorations. Our
optimization merges these objects into the skeleton such that the
extra stages disappear. In (9) the decoration is P = perm

(

p
)

and
the gather index mapping resulting from the loop merging in (11)
is p ◦ rj .

With the above example as a motivation, we now provide the
formal definition of index mappings that we use and then define
Σ-SPL.

3.1 Index Mappings

An important concept in Σ-SPL is the index mapping, concisely
expressed by a function mapping an interval into an interval. For
example, as we saw in (10), gather, scatter, and permutation matri-
ces are parameterized by these functions. Further, we express in-
dex mapping functions in terms of primitive functions and function
operators to capture their structure and thus enable all necessary
simplifications, which would be exceedingly difficult on the corre-
sponding C code.

Index mapping functions. We start with some definitions. An
integer interval is denoted by

In = {0 . . . , n − 1}.

An index mapping function f with domain In and range IN is
denoted by

f : In → IN ; i 7→ f(i).

We use the short-hand notation fn→N to refer to an index mapping
function of the form f : In → IN .

Index mapping functions may depend on parameters. Assuming
the parameter is j, we would write

fj : In → IN ; i 7→ fj(i).

A bijective index mapping function

p : In → In; i 7→ p(i)

defines a permutation on n elements and is denoted by pn .
To capture the structure of index mapping functions we use a

few primitive functions and operators defined next.
Primitive index mapping functions. We define the identity

index mapping function as

ın : In → In; i 7→ i

and the constant function on the domain I1, parameterized by
0 ≤ j < n, as

(j)n : I1 → In; i 7→ j.

In other words, (j)n maps 0 to j. We also define the add constant
function, for k ≤ N − n, as

(k)n→N
+ : In → IN ; i 7→ i + k.

Function operators. Structured index mapping functions are
built from the above primitives using function operators.

For the two index mapping functions

f : Im → IM ; i 7→ f(i) and g : In → IN ; i 7→ g(i)

with n = M , we define the function composition in the usual way:

g ◦ f : Im → IN ; i 7→ g(f(i)).

Further, we define the tensor product of index mapping func-
tions as

f ⊗ g : Imn → IMN ; i 7→ Nf
(⌊

i
n

⌋)

+ g(i mod n).

Intuitively, if Inm is organized as an m×n array, then f⊗g applies
f to its rows and g to its columns to obtain an M ×N array which
represents IMN .

Tensor products of ın and (j)m correspond to multi-linear in-
dex mapping functions. The simplest case with only two terms ex-
presses strided (vector) access and unit stride access, respectively.
Namely,

ın ⊗ (j)m : In → Imn; i 7→ im + j, (12)

(j)m ⊗ ın : In → Imn; i 7→ i + jn. (13)

3.2 Σ-SPL

Σ-SPL extends the original SPL with four new parameterized ma-
trices that are described by their defining functions:

Grn→N , Swn→N , perm
(

p
n )

, and diag
(

f
n→C

)

,

where fn→C is a function from In to C. Further, we introduce the
new matrix operator iterative sum,

n−1
∑

j=0

Aj .

In Σ-SPL the summands Aj of an iterative sum are constrained
such that actual additions (except the ones incurred by the Aj) are
never performed. This means that for every output index k, there is
at most one matrix Aj that has non-zero entries in row k.

These constructs are now explained in detail, together with
their interpretation as actual C code, which is straightforward, and
summarized in Table 1. For completeness, we include the matrix
product, which is part of standard SPL.

Product of Matrices. For y = ABx first t = Bx is computed
and then y = At, leading to the first compilation rule in Table 1.

Iterative sums of matrices. The interpretation of the iterative
sum as a loop makes use of the distributivity law:

(

n−1
∑

j=0

Aj

)

x =

n−1
∑

j=0

(Ajx). (14)



Code(AB, y, x) → Code(B, t, x);Code(A, y, t);

Code
(

∑k−1
j=0 Aj , y, x

)

→

for(j=0; j<k; j++) Code(Aj , y, x);

Code(Gfn→N , y, x) →
for(j=0; j<n; j++) y[j] = x[f(j)];

Code(Sfn→N , y, x) →
for(j=0; j<n; j++) y[f(j)] = x[j];

Code(perm
(

pn
)

, y, x) →
for(j=0; j<n; j++) y[j] = x[p(j)];

Code(diag
(

fn→C
)

, y, x) →
for(j=0; j<n; j++) y[j] = f(j)*x[j];

Table 1. Translating Σ-SPL constructs to code; x denotes the input
and y the output vector.

Due to the constraint that the iterative sum actually does not incur
any additional operations, it encodes a loop where each iteration
produces a non-overlapping part of the final output vector. Each
summand in the iterative sum typically consists of three factors
that encode three parts of the final program: 1) A gather matrix
(details below) specifying the addresses for loading the input, 2) a
computational kernel specifying the actual computation, and 3) a
scatter matrix (details below) specifying the addresses for storing
the results. The code for (14) is produced by the second rule in
Table 1.

Gather matrices. Let en
k ∈ C

n×1 be the canonical basis vector
with entry 1 in position k and entry 0 elsewhere. An index mapping
function fn→N generates the gather matrix ([·]> is the matrix
transposition)

Gfn→N :=
[

e
N
f(0) | e

N
f(1) | · · · | e

N
f(n−1)

]>

.

This implies that for two vectors x = (x0, . . . , xN−1)
> and

y = (x0, . . . , xn−1)
>,

y = Gfn→N x ⇔ yi = xf(i),

which explains the corresponding code produced by the third rule
in Table 1.

Scatter matrices. An index mapping function fn→N generates
the scatter matrix

Sfn→N :=
[

e
N
f(0) | e

N
f(1) | · · · | e

N
f(n−1)

]

.

Scatter and gather matrices generated by the same function are
transposes of each other. This introduces for two vectors x =
(x0, . . . , xn−1)

> and y = (x0, . . . , xN−1)
> the identity

y = Sfn→N x ⇔ yj =

{

xi if j = f(i)

0 else
.

Code for the matrix-vector product y = Sfn→N x when used
within an iterative sum is shown by the fourth rule in Table 1. The
elements set to zero can be omitted in this case since they do not
contribute to the result.

Permutation matrices. A permutation matrix corresponding to
its defining permutation pn is written as

perm
(

p
n )

:=
[

e
n
p(0) | e

n
p(1) | · · · | e

n
p(n−1)

]>
.

Permutation matrices are special cases of gather matrices with the
constraint that the index mapping function must be bijective. Thus,
the algorithm to implement gather matrices is used to implement
permutation matrices.

Diagonal matrices. A function fn→C : In → C defines the
n × n diagonal matrix

diag
(

f
n→C

)

:= diag
(

f(0), . . . , f(n − 1)
)

.

The translation of the matrix-vector product y = diag
(

fn→C
)

x to
code is shown by the last rule in Table 1.

Example. As explained in the beginning of this section, we use
iterative sums to make the loop structure of skeleton objects in
SPL explicit. The summands are sparse matrices that depend on the
summation index. By construction, the iterative sum does not lead
to any additional arithmetic operations, since the elements of the
original matrix are distributed among different matrix summands,
and all the other summand elements are set to zero. For example,

I2 ⊗F2 , F2 =

[

1 1
1 −1

]

becomes in Σ-SPL the sum
[

F2 02

02 F2

]

=

[

F2 02

02 02

]

+

[

02 02

02 F2

]

. (15)

With the definition of the scatter and gather matrices

S0 =
[

I2 | 02

]>
and S1 =

[

02 | I2
]>

,

G0 =
[

I2 | 02

]

and G1 =
[

02 | I2
]

,

(15) can be written as the iterative sum
1
∑

j=0

Sj F2 Gj . (16)

However, in (16) the subscripts of S and G are integers and not
functions. Using the identity function, the constant function, and
the tensor product for functions (see Section 3.1), we express the
gather and scatter matrices as

Sj = S(j)2⊗ı2 and Gj = G(j)2⊗ı2 .

The matrix-vector product y = (I2 ⊗F2)x now becomes in Σ-SPL

y =

1
∑

j=0

S(j)2⊗ı2 F2 G(j)2⊗ı2 x.

Using the rules in Table 1 we obtain the following unoptimized
program:

// Input: _Complex double x[4], output: y[4]
_Complex double t0[2], t1[2];
for (int j=0;j<2;j++) {

for (int i=0; i<2; i++) t0[i] = x[i+2*j];
t1[0] = t0[0] + t0[1];
t1[1] = t0[0] - t0[1];
for (int i=0; i<2; i++) y[i+2*j] = t1[i];

}

After standard optimizations (performed by the standard SPL
compiler), such as loop unrolling, array scalarization, and copy
propagation, we obtain the following optimized program:

// Input: _Complex double x[4], output: y[4]
for (int j=0;j<2;j++) {

y[2*j] = x[2*j] + x[2*j+1];
y[2*j+1] = x[2*j] - x[2*j+1];

}

4. The Σ-SPL Rewriting System
In this section we describe the new loop optimization procedure and
its implementation in SPIRAL. The optimizations are implemented
as a series of rewriting systems operating on SPL and Σ-SPL
expression trees. An overview of the different steps is shown in
Figure 2, which is inserted in the formula optimization block in
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Figure 2. Translating SPL to optimized code.

SPIRAL (see Figure 1). The steps are generic for all transforms
and algorithms except the index simplification (bold box), which
requires the inclusion of rules specific to the class of algorithms
considered. We start with an overview; then we explain the steps in
detail.

Expansion of skeleton. In the first step we translate an SPL
formula (as generated within SPIRAL) into a corresponding Σ-
SPL formula. The skeleton (see Section 3) is expanded into iterative
sums and the decorations are expressed in terms of their defining
functions.

Loop merging. A generic set of rules merges the decorations
into adjacent iterative sums, thus effectively merging loops. In this
process index mapping functions are symbolically composed, and
thus become complicated or costly to compute.

Index simplification. In this stage the index mapping functions
are simplified, which is possible due to their symbolic representa-
tion and a set of symbolic rules. The rules of this stage are trans-
form dependent and encode the domain specific knowledge how to
handle specific permutations. Most identities are based on number
theoretic properties of the permutations. Identifying these rules for
a given transform is usually a research problem.

Code generation. After the structural optimization the Σ-SPL
compiler is used to translate the final expression into initial code
(see Table 1), which is then further optimized as in the original
SPL compiler [11].

Running example. In the following detailed explanation, we
use the following simple formula, a special case of (9), as a running
example

(Im ⊗DFTn) L
mn
m , L

mn
m = perm

(

`
mn
m

)

, (17)

with `mn
m : Imn → Imn, mapping

i 7→

{

(im) mod (mn − 1) if i < mn − 1,

mn − 1 if i = mn − 1.
(18)

The direct translation of (17) into code for m = 5 and n = 2 would
lead to the following code:

// Input: _Complex double x[10], output: y[10]
_Complex double t[10];
// explicit stride permutation L^10_5
for (int i=0; i<10; i++)

t[i] = x[i<9 ? (i*5)%9 : 9];
// kernel loop I_5 x DFT_2

A ⊕ B → S
(0)m→m+m′

+

A G
(0)n→n+n′

+

+ (19)

S
(m)m′

→m+m′

+

A G
(n)n′

→n+n′

+

A ⊗ Ik →

k−1
∑

j=0

Sım⊗(j)k
A Gın⊗(j)k

(20)

Ik ⊗A →

k−1
∑

j=0

S(j)k⊗ım
A G(j)k⊗ın

(21)

Table 2. Rules to expand the skeleton.

for (int i=0; i<5; i++) {
y[2*i] = t[2*i] + t[2*i+1];
y[2*i+1] = t[2*i] - t[2*i+1];

}

The code contains two loops, originating from the permutation
matrix Lmn

m and from the computational kernel Im ⊗DFTn. Note
that optimized methods to implement the stride permutation Lmn

m

using two nested loops can be found in [10]. However, we do not
resort to such an implementation as this treats the stride permuta-
tion as a special case and we aim at solving the general problem.
The goal in this example is to merge the two loops into one.

4.1 Expansion of Skeleton

This stage translates SPL formulas, generated by SPIRAL, into Σ-
SPL formulas. It translates all skeleton objects in the SPL formula
into iterative sums and makes the defining functions of decorations
explicit. Table 2 summarizes the rewrite rules used in this step,
assuming A ∈ C

m×n, B ∈ C
m′×n′

.
The tensor product structure of matrices is in Σ-SPL captured

through the tensor product structure of the gather and scatter in-
dex mapping functions. The add constant function is used in the
conversion of direct sums of matrices.

In our example (17), the rewriting system applies the rule (21)
to obtain the Σ-SPL expression

(

m−1
∑

j=0

S(j)m⊗ın
DFTn G(j)m⊗ın

)

perm
(

`
mn
m

)

. (22)

4.2 Loop Merging

The goal of loop merging is to propagate all index mapping func-
tions for a nested sum into the parameter of one single gather and
scatter matrix in the innermost sum, and to propagate all diago-
nal matrices into the innermost computational kernel. Table 3 sum-
marizes the necessary rules. Loop merging consists of two steps:
moving matrices into iterative sums, and actually merging or com-
muting matrices.

First, matrices are moved inside iterative sums by applying
rules (24) and (25) that implement the distributivity law. Note, that
iterative sums are not moved into other iterative sums.

Second, the system merges gather, scatter, and permutation ma-
trices using rules (26)–(29) and pulls diagonal matrices into the
computational kernel using (30) and (31). This step simply com-
poses defining functions, possibly creating complicated terms that
must be simplified in the next step.

After loop merging, (22) is transformed into

m−1
∑

j=0

(

S(j)m⊗ın
DFTn G`mn

m ◦((j)m⊗ın)

)

. (23)



(

m−1
∑

j=0

Aj

)

M →

(

m−1
∑

j=0

AjM

)

(24)

M

(

m−1
∑

j=0

Aj

)

→

(

m−1
∑

j=0

MAj

)

(25)

Gsn→N1 GrN1→N → Gr◦s (26)

SvN1→N Swn→N1 → Sv◦w (27)

Grn→N perm
(

π
N )

→ Gπ◦r (28)

perm
(

π
N )

Swn→N → Sπ−1◦w (29)

Grn→N diag
(

f
N→C

)

→ diag
(

f ◦ r
)

Gr (30)

diag
(

f
N→C

)

Swn→N → Sw diag
(

f ◦ w
)

(31)

Table 3. Loop merging rules.

4.3 Index Mapping Simplification

As said before, this is the only step that depends on the considered
transform and its algorithms. We consider the DFT and the FFTs
(5)–(7). These recursions involve permutations that involve integer
power computations, modulo operations, and conditional compu-
tations. In addition to the stride permutation (18) in the Cooley-
Tukey decomposition (5), the prime-factor decomposition (6) uses
the permutation matrix Vr,s = perm

(

vr,s
)

, for gcd(r, s) = 1,
with

v
r,s : Irs → Irs; i 7→

(

s
⌊

i
s

⌋

+ r(i mod s)
)

mod rs.

For prime n, the Rader decomposition (7) requires an exponentia-
tion permutation matrix Wr,s = perm

(

wn
1,g

)

, where g is a gener-
ator of the multiplicative group Z

×
n , and

w
n
ϕ,g : In → In; i 7→

{

0 if i = 0,
ϕgi−1 mod n else.

Thus, our rewriting system requires powerful index mapping func-
tion simplifications, as the previous steps merge the already com-
plicated index mappings from each stage into one very complicated
index mapping function in the innermost nested sum.

We express the index mappings using symbolic functions like
ın, (j)m, and (k)n→N

+ as well as the tensor product and function
composition to enable simplification. In order to handle (6) and (7)
we have to introduce three helper functions,

h
n→N
b,s : In → IN ; i 7→ b + is, s|N, (32)

h
n→N
b,s : In → IN ; i 7→ b + is mod N, s|N, (33)

w
n→N
ϕ,g : In → IN ; i 7→ ϕg

i mod N. (34)

The power of using symbolic functions and operators becomes ap-
parent next. Namely, we can identify a rather small set of context
insensitive simplification rules to simplify all index functions aris-
ing from combining the FFT rules (5)–(7). The required simplifi-
cations cannot be done solely using basic integer identities as con-
flicting identities and special number-theoretical constraints (e.g., a
variable is required to be the generator of a cyclic group of order n)
would be required. Our function symbols capture these conditions
by construction while our rules encode the constraints.

Table 4 summarizes the most important index simplification
rules. Rules (35)–(39) are used to simplify Cooley-Tukey FFT de-
compositions. Rules (40)–(42) are used for decompositions based
on the Cooley-Tukey FFT and other FFTs. Rules (43)–(46) are used
for the Rader FFT and (47) for the prime-factor FFT.

`
mn
m ◦

(

(j)m ⊗ f
k→n) → f

k→n ⊗ (j)m . (35)
(

`
mn
m

)−1
→ `

mn
n (36)

(

f
1→m ⊗ h

)

◦ g → f ⊗ (h ◦ g) (37)
(

h ⊗ g
1→n) ◦ f → (h ◦ f) ⊗ g (38)

(f0 ⊗ f1) ◦ (g0 ⊗ g1) → (f0 ◦ g0) ⊗ (f1 ◦ g1) (39)

ın → h
n→n
0,1 (40)

f
m→M ⊗ g

1→N → h
M→MN
g(0),N ◦ f (41)

g
1→N ⊗ f

m→M → h
M→MN
Mg(0),1 ◦ f (42)

w
N
ϕ,g ◦ (0)1→N

+ → (0)1→N
+ (43)

w
N
ϕ,g ◦ (N − 1)N−1→N

+ → w
N−1→N
ϕ,g (44)

w
N′→N
ϕ,g ◦ h

n→N′

b,s → w
n→N
ϕgb,gs (45)

w
N′→N
ϕ,g ◦ h

n→N′

b,s → w
n→N
ϕgb,gs (46)

v
r,s ◦ h

s→rs
b,1 → h

s→rs
b,r (47)

Table 4. Index function simplification rules.

The identification of these rules is one of the main contributions
of this paper.

In our example, the index function simplification applies rule
(35) to (23) to obtain

m−1
∑

j=0

(

S(j)m⊗ın
DFTn Gın⊗(j)m

)

. (48)

4.4 Code Generation

The Σ-SPL compiler first generates unoptimized code for an Σ-
SPL formula using the context insensitive mappings given in Ta-
ble 1. As in the original SPL compiler [11], an unrolling parameter
B to the Σ-SPL compiler controls which loops in a Σ-SPL for-
mula will be fully unrolled and thus become basic blocks in which
all decorations and index mappings are inlined. Our approach re-
lies on further basic block level optimizations to produce efficient
code. These are a superset of the optimizations implemented in the
original SPL compiler, including 1) full loop unrolling of compu-
tational kernels, 2) array scalarization, 3) constant folding, 4) alge-
braic strength reduction, 5) copy propagation, 6) dead code elim-
ination, 7) common subexpression elimination, 8) loop invariant
code motion, and 9) induction-variable optimizations.

Translating our running example (48) into optimized code using
the Σ-SPL compiler leads to the following:

// Input: _Complex double x[10], output: y[10]
for (int j=0; j<5; j++) {

y[2*j] = x[j] + x[j+5];
y[2*j+1] = x[j] - x[j+5];

}

4.5 Rader and Prime-Factor Example

To demonstrate how our framework applies to more complicated
SPL formulas, we show the steps for compiling a part of a 3-level
recursion for a non-power-of-2 size DFT that uses all three different
recursion rules (5)–(7), namely a DFTpq with q prime, and q−1 =
rs. Initially the prime-factor decomposition (6) is applied for the
size pq, then the Rader decomposition (7) decomposes the prime
size q into q − 1. Finally, a Cooley-Tukey step (5) is used to
decompose q − 1 into rs. We only discuss a fragment of the



resulting SPL formula, namely

(Ip ⊗ (I1 ⊕(Ir ⊗DFTs)L
rs
r ) Wq) Vp,q,

which is also shown in (49) in Table 5. This formula has three
different permutations, and a naive implementation would re-
quire three explicit shuffle operations, leading to three extra passes
through the data vector.

Our rewriting system merges these permutation matrices into
the innermost loop and then simplifies the index mapping function,
effectively reducing the number of necessary mod operations to
approximately 3 mods per 2 data points and improving the locality
of the computation at the same time. We discuss the intermediate
steps following Figure 2.

Expansion of skeleton. Rules (21) and (19) expand the skeleton
to produce the unoptimized Σ-SPL formula (50) in Table 5. A direct
compilation for p = 4, q = 7, r = 3, and s = 2 would result in the
following code.

00 // Input: _Complex double x[28], output: y[28]
01 _Complex double t1[28];
02 // permutation v^(4,7)
03 for(int i5 = 0; i5 <= 27; i5++)
04 t1[i5] = x[(3*i5 + 8*(i5%7))%28];
05 // iterative sum
06 for(int i1 = 0; i1 <= 3; i1++) {
07 _Complex double t3[7], t4[7], t5[7];
08 // gather
09 for(int i6 = 0; i6 <= 6; i6++)
10 t5[i6] = t1[7*i1 + i6];
11 // permutation w^7
12 for(int i8 = 0; i8 <= 6; i8++)
13 t4[i8] = t5[i8 ? pow(3, i8-1)%7 : 0];
14 // gather, permutation i_1, scatter
15 t3[0] = t4[0];
16 { _Complex double t10[6], t11[6], t12[6];
17 // gather
18 for(int i13 = 0; i13 <= 5; i13++)
19 t12[i13] = t4[i13 + 1];
20 // permutation l^6_3
21 for(int i14 = 0; i14 <= 5; i14++)
22 t11[i14] = t12[i14/2 + 3*(i14%2)];
23 // iterative sum
24 for(int i3 = 0; i3 <= 2; i3++) {
25 _Complex double t14[2], t15[2];
26 // gather
27 for(int i15 = 0; i15 <= 1; i15++)
28 t15[i15] = t11[2*i3 + i15];
29 // t14 = DFT_2*t15
30 t14[0] = t15[0] + t15[1];
31 t14[1] = t15[0] - t15[1];
32 // scatter
33 for(int i17 = 0; i17 <= 1; i17++)
34 t10[2*i3 + i17] = t14[i17];
35 }
36 // scatter
37 for(int i19 = 0; i19 <= 5; i19++)
38 t3[i19 + 1] = t10[i19];
39 }
40 // scatter
41 for(int i20 = 0; i20 <= 6; i20++)
42 y[7*i1 + i20] = t3[i20];
43 }

The code contains explicit data permutations (e.g., lines 3/4
and 12/13), has multiple iterative stages as reflected by multiple
temporary vectors, and contains expensive power (line 13) and mod
operations. For example, the index computation in line 4 involves
two nested mod operations.

Loop merging. The rules in Table 3 are used to merge the
loops and thus move the decorations into the innermost sum. The

resulting Σ-SPL formula is shown in (51) in Table 5. Note that the
occurring index functions are very complicated.

Index simplification. Using only the rules in Table 4 the gather
and scatter index mapping functions are simplified to produce the
optimized formula shown in (52) in Table 5.

Code generation. Now the code can be generated for some
specific values of p, q, r and s using the Σ-SPL compiler. For the
same parameters as above, p = 4, q = 7, r = 3, s = 2, we get:

00 // Input: _Complex double x[28], output: y[28]
01 int p1, b1;
02 for(int j1 = 0; j1 <= 3; j1++) {
03 y[7*j1] = x[(7*j1%28)];
04 p1 = 1; b1 = 7*j1;
05 for(int j0 = 0; j0 <= 2; j0++) {
06 y[b1 + 2*j0 + 1] =
07 x[(b1 + 4*p1)%28] + x[(b1 + 24*p1)%28];
08 y[b1 + 2*j0 + 2] =
09 x[(b1 + 4*p1)%28] - x[(b1 + 24*p1)%28];
10 p1 = (p1*3)%7;
11 }
12 }

Each index computation involves now at most one mod opera-
tion. Data is never explicitly copied between buffers and the com-
putation is fully recursive. Note that simple optimizations like pre-
computing b1+4*p1 in lines 7 and 9 in each iteration are left to the
compiler.

4.6 Verification

A very important advantage of doing optimization at the formula
level is the possibility of exact verification. Since a Σ-SPL formula
still represents a sparse matrix factorization, it can always be con-
verted, in the SPIRAL environment, into the dense transform ma-
trix it represents and compared against the transform definition. For
relatively small sizes it is thus feasible to perform verification after
each rule application, which makes it possible to pinpoint the rule
that leads to a possibly invalid formula—an important feature in
our context of rather involved manipulations.

Beyond formula and rule verification, the presented approach
benefits from SPIRAL’s general code verification routines that are
automatically applicable [8].

5. Experimental Results
In this section we show runtime results of SPIRAL generated DFT
code using our new loop optimization approach. As said before, our
focus is on DFT sizes that cannot be computed using exclusively
the Cooley-Tukey FFT (5), since for these sizes, close-to-optimal
code is already available from vendor libraries, FFTW, or the orig-
inal SPIRAL. In other words, we focus on DFT sizes that require
at least one Rader step (7) that is not unrolled in the recursion. This
is the case if and only if the DFT size n has a prime divisor p|n
that is larger than the unrolling threshold B, i.e., p > B. Further,
since the Rader step is far more expensive than a prime-factor or
Cooley-Tukey step, we divide the set of all numbers into levels, de-
pending on how many Rader steps are needed. This is captured in
the following definition.

Definition 1 Let B > 0 be given (the unrolling threshold). With
respect to B, a prime number p is called level 0 if p ≤ B, and level
i, i > 0, if the largest level of all prime divisors of p−1 is i−1. An
integer is called level i, if the largest level of all its prime divisors
is i.

For example, if B = 16, then n = 11, n = 33 = 3 · 11 are
level 0, n = 17, n = 323 = 17 · 19 are level 1, and n = 47 is level
2, since 23|(47 − 1) and 23 is level 1.



(Ip ⊗ (I1 ⊕(Ir ⊗DFTs)L
rs
r ) Wq) Vp,q (49)

p−1
∑

j1=0

(

S(j1)p⊗ıq

(

S
(0)

1→q
+

perm(ı1) G
(0)

1→q
+

+ S
(1)

q−1→q
+

(

r−1
∑

j0=0

S(j0)r⊗ıs
DFTs G(j0)r⊗ıs

)

perm(`q−1
r ) G

(1)
q−1→q
+

)

perm(wq
1,g) G(j1)p⊗ıq

)

perm(vp,q) (50)

p−1
∑

j1=0

(

S((j1)p⊗ıq)◦(0)1→q
+

◦ı1
G

vp,q◦((j1)p⊗ıq)◦w
q
1,g

◦(0)
1→q
+

+

r−1
∑

j0=0

S((j1)p⊗ıq)◦(1)q−1→q
+

◦((j0)r⊗ıs) DFTs G
vp,q◦((j1)p⊗ıq)◦w

q
1,g

◦(1)
q−1→q
+

◦`rs
r ◦((j0)r⊗ıs)

)

(51)

p−1
∑

j1=0
b1=qj1

(

Sh
p→pq
0,q

◦(j1)p
Gh

p→pq
0,q ◦(j1)p

+

r−1
∑

j0=0

φ1=gj0

Sh
s→pq
qj1+sj0+1,1

DFTs Gh
q→pq
b1,p

◦w
s→q

φ1,gs

)

(52)

Table 5. Loop merging example for the formula fragment (49), arising from a combination of prime-factor, Rader, and Cooley-Tukey
FFT. The steps follow Figure 2: After expansion of the skeleton (50); after loop merging (51); and the final Σ-SPL formula after index
simplification (52).

Intuitively, if a DFT of size n is recursively expanded into a tree
using the three recursions (5), (6), and (7), then the level of n is the
number of levels in this tree that contain a Rader step. Since Rader
is expensive, a higher level will imply a lower relative performance.

If an unrolling threshold B is chosen, then the DFTs that can be
computed exclusively using Cooley-Tukey are precisely those with
a level 0 size. For B = 16, the numbers 1 ≤ n ≤ 1024 divide into
levels as follows; only about one quarter are level 0.

level 0 1 2 3 4
how many 245 536 205 36 1

Experimental setup. We ran the experiments on a Pentium 4,
processor number 560, 3.6 GHz, under Windows XP using the Intel
C++ compiler 8.0 with flags /Qc99 /O3 /Qrestrict /QxKWP. We
considered only double precision code and measured the runtime
of Intel’s MKL 7.2.1, FFTW 3.0.1, and SPIRAL generated code
using the new optimization approach. For best performance it is
necessary to use short vector instructions. The considered Pentium
4 provides for double precision the instruction set extensions SSE2
and SSE3. Both provide 2-way vector instructions and SSE3 is a
superset of SSE2, designed specifically to map complex arithmetic
efficiently. The MKL provides code optimized for Pentium 4 using
SSE2 or SSE3, FFTW provides scalar and SSE2 code, and with
SPIRAL we generated scalar code and SSE3 code. The SSE3 code
was obtained by generating complex C99 code and using compiler
vectorization (flag /QxKWP). The advantage of this method is that
it can be applied regardless of the DFT size. The disadvantage is
that for sizes that are divisible by 4 (square of the vector length)
we obtain roughly 20–30% slower code than with the SSE2 code
generated using our vectorization method in [8]. We chose SSE3
since it fits seamlessly into the new Σ-SPL framework and does not
require additional vectorization effort, thus allowing us to focus on
the analysis of the new optimization approach.

5.1 SPIRAL vs. FFTW

In Figure 3 we compare the runtime of FFTW and SPIRAL gener-
ated code. Since the default installation of FFTW provides unrolled
basic blocks (codelets) up to size 16 (and for 32 and 64), we chose

for SPIRAL too, an unrolling threshold of B = 16 for fair compar-
ison. As said above, we consider sizes of level 1 and higher with
respect to this B.

For FFTW (dashed lines), we measured scalar and SSE2 code
(provided by FFTW), in both cases using FFTW’s search for
the best recursion tree. For SPIRAL, we generated scalar code
and SSE3 code (solid black lines), in both cases only using the
FFTs (5)–(7). Finally, we also generated code with SPIRAL using
Bluestein (8) (solid gray line), again as complex C99 code using
compiler vectorization for SSE3.

Level 1 sizes. For sizes of level 1 (Figure 3, top) and scalar
code (bullets), SPIRAL code is between 1.25 and 2 times faster
than FFTW. FFTW’s SSE2 code is only marginally faster than its
scalar code since most of the time is spent in the costly Rader
permutations. SPIRAL’s generated SSE3 code (vectorized by the
compiler from explicit complex C99 code) consistently gains about
another 50% in performance, independent of the size, yielding a
total improvement of a factor of 2–3 over FFTW. The Bluestein
method (gray line) is not competitive for almost all level 1 num-
bers. Note that the Bluestein method (8) is about constant within
intervals 2k < n < 2k+1, since all DFTs of these sizes are com-
puted using two DFTs of size 2k+2.

Level 2 sizes. For level 2 sizes, we observe, as expected because
of the two Rader steps, a larger gap between FFTW and SPIRAL
generated code, which can now be as much as a factor of 3 for scalar
code, and a factor of 4 for vector code. Bluestein is still inferior for
most sizes.

Level 3 sizes. For level 3 sizes, the gap between FFTW and
SPIRAL generated code further widens, and here Bluestein is faster
in all cases, gaining up to a factor of 9 over FFTW.

Summary. The experiments validate that our method for loop
merging produces significant performance gains for DFT sizes of
level 1 and higher. Further, by generating explicit complex code and
vectorizing for SSE3, we obtain another consistent performance
gain of 50%. The experiments show that for DFT sizes of level
1 and 2 the recursive FFTs are preferable, whereas for levels 3 and
higher Bluestein is faster. The search mechanism in SPIRAL will
determine this automatically.
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Figure 3. DFT runtime results for sizes between 100 and 1000
of level 1 (top), 2 (middle), and 3 (bottom): FFTW (dotted) and
SPIRAL generated (solid). Lower is better.

5.2 SPIRAL vs. Intel MKL

We compare SPIRAL against Intel’s MKL. This time we only
consider vector code: MKL uses SSE2 or SSE3, and our generated
code uses SSE3 (as said above, this is achieved by generating
complex C99 code and using compiler vectorization). The source
code of MKL is not available, and MKL’s internal structure and
the algorithms used are not documented. For this reason we first
analyze MKL’s runtime behavior.

MKL DFT runtime behavior. In the first experiment we timed
MKL for all DFT sizes up to 1024. Figure 4 shows the result. The
points, and thus the DFT sizes, are partitioned into three classes:
Class 1 includes all sizes whose largest prime factor is smaller than
32 (black triangles); class 2 includes all sizes whose largest prime
factor is between 32 and 150 (white squares); and class 3 includes
all sizes whose largest prime factor exceeds 150 (gray bullets). Note
that this is not a division into levels (see Definition 1). Class 1 is the
set of level 0 numbers for unrolling threshold B = 32; class 2 is the
set of level 0 numbers for B = 150, which are not in class 1; and
class 3 is the set of all numbers of level 1 and higher for B = 150.

From Figure 4 we speculate that MKL uses Cooley-Tukey (and
maybe prime-factor), in tandem with a quadratic cost algorithm for
prime size kernels smaller than 150 (each of the parabolic strands
in class 2 seems to have quadratic or near-quadratic behavior as
we confirmed through polynomial curve fitting), and Bluestein for
class 3 numbers. In other words, it seems that Rader is not used.

Since class 1 sizes are precisely the level 0 numbers for the
(reasonable) unrolling threshold B = 32, we compare against
MKL only for class 2 and class 3 sizes, and we choose B = 32
as unrolling threshold in SPIRAL. Since we generate vector code,
a larger threshold would be possible, but for 150 the basic blocks
become too large.

Class 2. Figure 5 shows the ratio of the runtimes of SPIRAL
generated code and MKL for class 2 sizes. A value < 1 signifies
that SPIRAL’s code is faster. As we see from this plot, SPIRAL
code is between 30% faster and 4.5 times slower. The median of all
ratios is 1.35, i.e., 35% slower. To better understand for which DFT
sizes we fare worse, we further partition into subclasses. If MKL
does successfully use an O(n2) algorithm for small prime sizes,
one would expect that we fare worse for sizes that require several
Rader steps independent of whether they are unrolled or not due
to their relatively high arithmetic cost. For this reason we partition
the size in Figure 5 into those of level 1 (black triangles), level 2
(white squares), and level 3 and higher (gray bullets) for unrolling
threshold 5 (the 5 was chosen empirically). As expected our code
compares best for level 1 (median 1.02), a little worse for level 2
(median 1.36), and worst for level 3 and higher (median 2.78).

Class 3. Figure 6 shows the runtime of MKL’s DFTs and SPI-
RAL generated DFT code of problem sizes in class 3. Obviously,
MKL (gray bullets) uses Bluestein (8). Class 3 sizes, as class 2
sizes, are level 1 or higher with respect to our unrolling thresh-
old 32. For level 1 sizes (black triangles), SPIRAL generated code
runs up to twice as fast as MKL code, and is faster for most sizes.
For level 2 sizes (white squares) MKL is faster for most numbers;
however, SPIRAL’s Bluestein (gray line) limits the slowdown to
30%, which is roughly the loss of our SSE3 vectorization versus
the better SSE2 vectorization in [8] for the 2-power FFTs used in
Bluestein.

Summary. SPIRAL generated code tends to be faster than MKL
DFT code for level 1 sizes with respect to unrolling threshold 32
and is comparable (with the disadvantage of SSE3 vectorization
leading to 20 % slowdown) for level 0 and level 2 sizes. For level 0
sizes with prime factors of level 3 or higher with respect to un-
rolling threshold 5, however, SPIRAL generated code is far subop-
timal due to multiple Rader steps (7) in basic blocks.
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Figure 4. Runtimes of Intel MKL’s DFT for sizes up to 1024. The sizes are partitioned into 3 classes (explained in the text).
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Figure 5. Runtime ratios of SPIRAL’s DFT and MKL’s DFT for class 2 sizes, partitioned into 3 classes (explained in the text).

6. Conclusions
We presented an extension of the SPL language and SPL compiler
used in SPIRAL to enable loop optimization for signal transform
algorithms at the formula level. The approach concurs with the
SPIRAL philosophy which aims to perform optimizations at the
“right level” of abstraction. The “right level” depends on the type
of optimization and is usually a research question. For the loop
optimizations considered in this paper, we found that the right level
is between SPL and the actual code as reflected by Σ-SPL, which,
unlike SPL, represents loops and index mappings explicitly and
compactly. We want to emphasize that the main goal was not to
optimize the discussed FFT algorithms, but to develop a general
framework that can perform these loop optimizations for the entire

domain of linear transforms considered by SPIRAL. Our approach
is specific to this domain, but general within this domain.

Of course, our approach requires us to identify for each con-
sidered transform and set of transform algorithms the proper set of
index function simplification rules, which, in this paper, we did for
the FFTs (5)–(8). As a result we could generate DFT code for sizes
of level 1 and 2 that is considerably faster than FFTW under equal
choice of algorithms and unrolling threshold. For sizes of level 3
and higher, we achieved an even higher speed-up, which, however
was based on the Bluestein FFT, which we believe could be easily
incorporated into FFTW.

The comparison to Intel’s MKL produced mixed results, be-
tween considerable improvements for some sizes and considerably
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Figure 6. Runtimes of SPIRAL’s DFT and MKL’s DFT for class 3 sizes (where MKL uses Bluestein). The SPIRAL runtimes are partitioned
into 2 classes (explained in the text). SPIRAL’s Bluestein is also shown.

slower code for other sizes. Since we believe that MKL does not
use Rader, but some O(n2) algorithm for small primes, we plan to
incorporate the corresponding rules into SPIRAL to more carefully
study the trade-offs. No matter which strategy for small primes is
chosen, it is interesting to record that the Bluestein FFT is crucial
for high performance if all DFT sizes are to be implemented.

Finally, it was interesting to note that by generating explicit
complex C99 code and using compiler vectorization for SSE3, we
obtained, independent of the DFT size, a consistent performance
improvement of about 50%.
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