
Automatic Generation of the HPC Challenge’s Global
FFT Benchmark for BlueGene/P

Franz Franchetti1, Yevgen Voronenko2, and Gheorghe Almasi3
franzf@ece.cmu.edu, yvoronen@gmail.com, and gheorghe@us.ibm.com

1 Carnegie Mellon University, ECE Department, Pittsburgh, PA 15213, USA
2 Accuray, Inc., Sunnyvale, CA 94089, USA

3 IBM Research, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

Abstract. We present the automatic synthesis of the HPC Challenge’s Global
FFT, a large 1D FFT across a whole supercomputer system. We extend the Spiral
system to synthesize specialized single-node FFT libraries that combine a data
layout transformation with the actual on-node FFT computation to improve the
network performance through enabling all-to-all collectives. We run our opti-
mized Global FFT benchmark on up to 128k cores (32 racks) of ANL’s Blue-
Gene/P “Intrepid” and achieved 6.4 Tflop/s, outperforming ANL’s 2008 HPC
Challenge Class I Global FFT run (5 Tflop/s). Our code was part of IBM’s win-
ning 2010 HPC Challenge Class II submission. Further, we show first single-
thread results on BlueGene/Q.

1 Introduction

The HPC Challenge (HPCC) [1] has been developed to provide more in-depth
benchmarking of supercomputers beyond the HPL benchmark used for the TOP500
ranking [2]. HPCC contains seven benchmarks: HPL, STREAM, RandomAccess,
PTRANS, FFT, DGEMM, and b eff. In this paper we focus on the Global FFT bench-
mark, which computes a large 1D FFT across a large distributed-memory machine, us-
ing FFTE [3]. Given network bandwidth and node (CPU) performance developments,
Global FFT is on large machines dominated by the machine’s cross-sectional band-
width and thus the three global transposes required to compute a 1D FFT where input
and output are in natural order.

An optimized Global FFT implementation must combine an optimized communi-
cation library (e.g., the vendor MPI library) with an optimized FFT library (e.g., the
vendor FFT library). However, performance does not compose. To obtain the best per-
formance within each of these two libraries, incompatible data formats are required:
(1) The MPI library typically is best optimized to send large messages through collec-
tive communication functions (e.g., MPI all-to-all), which requires all data for the same
destination processor to be packed into one contiguous memory area. (2) Conversely,
FFT libraries usually require the data for FFTs to be contiguous in the node memory to
obtain best performance. However, the Global FFT algorithm requires sending neigh-
boring data elements to different target processors. Thus, one either needs to convert
the data between the storage formats in between library calls to the two libraries or



one needs to resort to less efficient library functions (e.g., MPI all-to-allv instead of
all-to-all). In either case the overhead can be significant.

Contribution. In this paper we present a novel distributed memory 1D FFT algo-
rithm for large processor counts. Our algorithm blocks the FFT’s three global trans-
poses so that for each transpose every processor sends only one large message (that
is contiguous in memory) to each other processor, using the most optimized collective
communication call. The necessary data scrambling before sending and after receiving
and the twiddle factor scaling becomes part of modified node FFT libraries. We extend
the program generation and autotuning framework Spiral to automatically generate and
optimize these modified FFT libraries, and use UPC as communication layer. Our opti-
mized Global FFT reaches 6.4 Tflop/s on 128k cores (32 racks) of ANL’s BlueGene/P
while FFTE (the original HPCC Global FFT) reached 5 Tflop/s on the same machine in
the 2008 Class I HPC Challenge award. Finally, we make a first step towards targeting
BlueGene/P’s successor—the BlueGene/Q system—and demonstrate Spiral’s ability to
automatically generate highly optimized single threaded code taking full advantage of
the new QPX SIMD vector instruction set.

Related work. One and multi-dimensional FFT algorithms for distributed memory
are an extensively studied topic. Most 1D FFT algorithms are building on the Six Step
FFT Algorithm [4], which breaks a large 1D FFT into two stages of local FFTs on
contiguous data plus a twiddle stage and three global transposes. FFTW [5] provides
a well-optimized open source single node and MPI FFT library. FFTE is specifically
designed for large 1D distributed memory FFTs [3], and the reference implementation
of the HPC Challenge’s FFT benchmark (Global FFT) [1]. In this work we extend the
program generation system Spiral [6, 7], and builds on Spiral’s code generation for
BlueGene/L’s Double FPU [8], and multicore CPUs [9]. Our system uses IBM’s UPC
runtime [10] as communication layer. We are building on Spiral’s experimental MPI
FFT code generation for fixed problem-size and small and fixed processor count (up
to 16) [11]. We are extending these concepts to automatically generate the whole FFT
computation required for the Global FFT HPCC benchmark, which needs to be a single
library working for any problem size and processor count without recompilation.

2 Background

In this section we discuss the necessary background for this paper. We review the Kro-
necker product formalism to describe fast Fourier transform (FFT) algorithms, the au-
totuning and program generation system Spiral, and the BlueGene/P supercomputer.

Fast Fourier Transform. Given n real or complex inputs x0, . . . , xn−1, the discrete
Fourier transform (DFT) is defined as

yk =
∑

0≤ℓ<n

ωkℓ
n xℓ, 0 ≤ k < n, (1)

with ωn = exp(−2πi/n), i =
√
−1. Stacking the xℓ and yk into vectors x =

(x0, . . . , xn−1)
T and y = (y0, . . . , yn−1)

T yields the equivalent form of a matrix-
vector product:

y = DFTn x, DFTn = [ωkℓ
n ]0≤k,ℓ<n. (2)



Computing the DFT by its definition (2) requires Θ(n2) many operations. FFT algo-
rithms reduce the runtime to O(n log(n)) and can be written in the form of structured
sparse matrix factorization using the Kronecker product formalism [6, 12]. The two-
point FFT is given by the butterfly matrix,

DFT2 =

[
1 1
1 −1

]
. (3)

In the following, we use In to denote an n× n identity matrix, and

A⊗B = [akℓB], A = [akℓ]

for the tensor (Kronecker) product of matrices. It replaces every entry ak,ℓ of A by
the matrix ak,ℓB. Most important for FFTs are the cases where A or B is the identity
matrix. As examples consider

I4 ⊗DFT2 =


1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

 and DFT2 ⊗ I4 =


1 1

1 1
1 1

1 1
1 −1

1 −1
1 −1

1 −1

 .

Further we introduce the stride permutation matrix defined by

Lmn
m : jn+ i 7→ im+ j, 0 ≤ i < n, 0 ≤ j < m.

Lmn
m can be seen as transposing a n×m matrix which is stored in row-major order and

is derived from reshaping a mn-dimensional vector into a n × m matrix. As example
consider

L8
2 =


1

1
1

1
1

1
1

1

.

Equation (4) shows the general mixed-radix Cooley-Tukey FFT algorithm:

DFTmn =
(
DFTm ⊗ In

)
Tmn

n

(
Im ⊗DFTn

)
Lmn
m . (4)

In (4), Tmn
n is a complex diagonal matrix [12]. Using (3) and (4), an 8-point FFT can

be derived by two recursive applications:

DFT8 = (DFT2 ⊗ I4) T
8
4

(
(DFT2 ⊗ I2)T

4
2(I2 ⊗DFT2) L

4
2)
)
L8
2 .



Formulas can be manipulated using formula identities like

In ⊗(BC) = (In ⊗B)(In ⊗C) (5)
(BC)⊗ In = (B ⊗ In)(C ⊗ In) (6)(

Lmn
m

)⊤
= Lmn

n (7)

(BC)⊤ = C⊤B⊤ (8)
A⊗B = Lmn

m (B ⊗A) Lmn
n (9)

(A⊗B)⊤ = A⊤ ⊗B⊤ (10)
Lkmn
n = (Lkn

n ⊗ Im)(Ik ⊗Lmn
n ) (11)

Lkmn
km = (Ik ⊗Lmn

m )(Lkn
k ⊗ Im) (12)

Lkmn
k = Lkmn

km Lkmn
kn . (13)

In (5)–(10), A is a m ×m matrix and B and C are n × n matrices. Further we denote
the conjugation of a matrix A by a permutation P by AP = P⊤AP and note that for
permutation matrices P−1 = P⊤.

void FFT8(_Complex double *Y, _Complex double *X) {
__alignx(16,Y);
__alignx(16,X);
_Complex double s34, s35, s36, s37, s38, t100, t101, t102

, t103, t104, t94, t95, t96, t97, t98, t99;
t94 = (*(X) + *((X + 4)));
t95 = (*(X) - *((X + 4)));
t96 = (*((X + 2)) + *((X + 6)));
s34 = (__I*(*((X + 2)) - *((X + 6))));
t97 = (t94 + t96);
t98 = (t94 - t96);
t99 = (t95 + s34);
t100 = (t95 - s34);
t101 = (*((X + 1)) + *((X + 5)));
t102 = (*((X + 1)) - *((X + 5)));
t103 = (*((X + 3)) + *((X + 7)));
s35 = (__I*(*((X + 3)) - *((X + 7))));
t104 = (t101 + t103);
s36 = (__I*(t101 - t103));
s37 = ((0.70710678118654757 + __I * 0.70710678118654757)*(t102 + s35));
s38 = ((-0.70710678118654757 + __I * 0.70710678118654757)*(t102 - s35));

*(Y) = (t97 + t104);

*((Y + 4)) = (t97 - t104);

*((Y + 1)) = (t99 + s37);

*((Y + 5)) = (t99 - s37);

*((Y + 2)) = (t98 + s36);

*((Y + 6)) = (t98 - s36);

*((Y + 3)) = (t100 + s38);

*((Y + 7)) = (t100 - s38);
}

Fig. 1. 8-point FFT, using complex C99 data types and the IBM XL C dialect.

Spiral. Recursive application of rules like (3) and (4) yields many different algo-
rithms for a FFT size. Spiral [6] uses this fact to search for the fastest on a given plat-
form. A user-specified transform (like DFT256) is expanded by Spiral using rules into



SPL construct code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1]);

y = (Im ⊗An)x
for (i=0;i<m;i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0;i<m;i++)

y[i:n:i+m-1] = A(x[i:n:i+m-1]);

y = Lkm
k x

for (i=0;i<k;i++)
for (j=0;j<m;j++)

y[i+k*j]=x[m*i+j];

y = Tkm
k x

for (i=0;i<k*m;i++)
y[i]=T_km_k[i]*x[i];

Table 1. Compiling SPL into code is done by recursively using the above correspondences. x
denotes the input and y the output vector. We use Matlab-like notation: x[b:s:e] denotes the
subvector of x starting at b, ending at e, and extracted at stride s. T km k is a array of pre-
computed constants.

a formula, which is then translated into a C program by a special formula compiler. The
formula compiler is based on a translation table similar to Table 1 and uses traditional
compiler techniques like unrolling, array scalarization, constant folding, and strength
reduction to produce high quality fixed-size FFT functions from a given formula. The
runtime of the program is measured and fed into a search module, which triggers, in a
feedback loop, the generation of a modified formula based on a search strategy. Upon
termination, Spiral out the fastest program found. Figure 1 shows an 8-point FFT gen-
erated by Spiral for BlueGene/P, using the complex data type extension of C99.

For sizes too large to be implemented as a single basic block, Spiral is automatically
generating a recursive mixed-radix FFT library [7] similar to FFTW [5]. Spiral employs
a rewriting system to symbolically expand breakdown rules like (4) to find a closure of
recursive functions that is needed to implement the recursive FFT library. It then auto-
matically implements these recursive functions as well as recursion leafs (codelets) for
a sufficiently large set of sizes. At runtime, a planner autotunes the recursive decompo-
sition of the FFT in an one-time setup effort. After tuning, a fast FFT library call for the
respective problem size is available.

The key insight is that a straightforward implementation of (4) suggests four steps
corresponding to the four factors, where two steps call smaller DFTs. However, to im-
prove locality, the initial permutation Lmn

m is usually not performed but interpreted as
data access for the subsequent computation, and the twiddle diagonal Tmn

n is fused with
the subsequent DFTs. This strategy is chosen, for example, in the library FFTW 2.x and
the code can be sketched as shown in Figure 2. A simplified description of performing
this process by hand can be found in [13].

BlueGene/P. BlueGene/P is the second generation BlueGene architecture from
IBM, succeeding BlueGene/L [14]. In its compute nodes BlueGene/P uses four Pow-
erPC 450 cores operating at 850 MHz with a double precision, dual pipe floating point



void dft(int n, complex *y, complex *x) {
int k = choose_factor(n);
// t1 = (I_k tensor DFT_m)L(n,k)*x
for(int i=0; i < k; ++i)

dft_iostride(m, k, 1, t1 + m*i, x + m*i);
// y = (DFT_k tensor I_m) diag(d(j))
for(int i=0; i < m; ++i)

dft_scaled(k, m, precomp_d[i], y + i, t1 + i);
}

// DFT variants needed
void dft_iostride(int n, int istride, int ostride, complex *y, complex *x);
void dft_scaled(int n, int stride, complex *d, complex *y, complex *x);

Fig. 2. Recursive FFT implementation in the style of FFTW 2.X.

unit per core. Each node has 13.6 Gflop/s peak performance (3.4Gflop/s per core) and
2 GB RAM with 13.6 GB/s memory bandwidth. Each core has a private 32 kB L1 cache
and the four cores of a node share an 8 MB L3 cache. The compute nodes are connected
with multiple interconnection networks including a 3-D torus (used for standard mes-
saging), a global collective network (used for reductions), and a global barrier network.
Each node has six bi-directional network links supporting 425 MB/s in each direction
into the torus network leading to 5.1 GB/s bidirectional bandwidth per node. The Blue-
Gene/P system “Intrepid” installed at Argonne National Laboratory (ANL) consists of
40 BlueGene/P racks. Each rack contains 1,024 compute nodes (32 node cards, each
holding 32 compute nodes), and each compute node four cores (one quad-core CPU).

BlueGene/P messaging layer. We use the IBM UPC runtime system as messag-
ing layer. It provides an equivalent to the MPI all-to-all collective operation that fully
utilizes BlueGene/P’s 3D torus interconnection network. To achieve best performance,
exactly one large message of equal size that is contiguous in the node memory should
be sent from every processor to every other processor.

BlueGene/Q. BlueGene/Q is the third generation BlueGene architecture from IBM,
succeeding BlueGene/P [15]. The Blue Gene/Q Compute chip [16] is a system-on-a-
Chip (SOC) ASIC with 16 user-accessible 4-way SMT (Symmetric Multi Threading)
A2 cores clocked at 1.6 GHz. A quad floating unit implementing the QPX instruction
set is associated with each core. The BlueGene/Q A2 chip achieves 204.8 Gflop/s peak
performance. At 1024 chips per rack, the 48 rack ANL “Mira” systems achieves a
peak performance of 10 Pflop/s and the 96 rack LLNL “Sequoia” system 20 Pflop/s,
respectively.

3 Global FFT Algorithm

We now derive our novel 1D Global FFT algorithm, which is a variant of the Six Step
FFT algorithm. Like the Six Step FFT algorithm, it has three global data exchanges.
However, we block the global transpositions so that exactly one pair of large messages
that are contiguous in memory are exchanged between every pair of processors in every
communication step. This can be mapped efficiently to collective communication func-
tions (all-to-all). We formally merge the ensuing data scrambling necessary to produce



consume the contiguous messages with the on-node FFT computations and derive mod-
ified FFT libraries (working on custom scrambled data format) that perform the reorder-
ing at no extra cost compared to standard FFT libraries. We use the Kronecker product
formalism to derive the algorithm and use Spiral to automatically build the modified
node FFT libraries from the Kronecker product specification. Finally, we show pseudo-
code for the top-level parallel (single program multiple data, SPMD) function that calls
the modified node FFT libraries.

Communica�on Parallel DFTs Communica�on Communica�onParallel DFTs

L16
4

(
I4 ⊗

(
(DFT2 ⊗ I2)T

4
2 (I2 ⊗DFT2)L

4
2

))
L16
4 T 16

4

(
I4 ⊗

(
(DFT2 ⊗ I2)T

4
2 (I2 ⊗DFT2)L

4
2

))
L16
4

Fig. 3. Six-step FFT for n = 24 and k = m =
√
n = 4.

Algorithm derivation. Using (5)–(13), the Six Step FFT algorithm can be derived
from (4):

DFTmn = Lmn
m

(
In ⊗DFTm

)
Lmn
n Tmn

n

(
Im ⊗DFTn

)
Lmn
m . (14)

By flipping both tensor products into their parallel form (In ⊗DFTm and Im ⊗DFTn),
the algorithm is guaranteed to perform all DFT computations within the local memory
of each node. This is achieved by reshaping the data vector of length mn into a n×m
matrix and explicitly transposing it back and forth (a total of three transpositions is
required). Typically, choosing m ≈

√
mn and n = mn/m gives the so-called “square-

root decomposition” which maximizes the number of processors that the DFT can be
run on in parallel and provides good load balancing. A visual (data flow) representation
of the 16-point six-step FFT is shown in Fig. 3. Details can be found in [17].

Below assume p processors and p | m, n. Using (5)–(13) and associativity and
distributivity the stride permutation Lmn

m can be expressed as three permutation stages.
First we use (12) to obtain

Lmn
m =

(
Ip ⊗L

mn/p
m/p

)(
Lnp
p ⊗ Im/p

)
. (15)



Next we use (5) to obtain

Lnp
p =

(
Lp2

p ⊗ In/p
)(

Ip ⊗Ln
p

)
. (16)

Inserting (16) into (15) yields

Lmn
m =

(
Ip ⊗L

mn/p
m/p

)(
Lp2

p ⊗ Imn/p2

)(
Ip ⊗Ln

p ⊗ Im/p

)
(17)

after further simplification.
Equation (17) describes treating the n ×m matrix as block matrix of p × p blocks

with block size nm/p×nm/p. Each of the p processor holds p blocks in its local mem-
ory. (17) states that a distributed matrix can be transposed by transposing all blocks (p2

local transpositions, each transposing a local block of size nm/p×nm/p) followed by
transposing the blocks (one p × p transposition moving whole blocks, implemented as
all-to-all collective communication). The mechanics of the Kronecker product formal-
ism requires three factors to describe the two steps. In our algorithm derivation we also
require a transposed version of (17) where we first swap m and n in (17) and the apply
(7) to obtain the transposed expression for Lmn

m , leading to

Lmn
m =

(
Ip ⊗Lm

m/p ⊗ In/p
)(

Lp2

p ⊗ Imn/p2

)(
Ip ⊗Lmn/p

m

)
. (18)

Inserting (17) and (18) into (14) and regrouping the ensuing expression using (5)
leads to the final algorithm (for a more detailed derivation see [11, 18]),

DFTmn =
(
Ip ⊗(Lm

m/p ⊗ In/p)
)︸ ︷︷ ︸

local transpose

(
Lp2

p ⊗ Imn/p2

)︸ ︷︷ ︸
all-to-all

(
Ip ⊗(DFTm ⊗ In/p)

)︸ ︷︷ ︸
inplace FFT library call(

Lp2

p ⊗ Imn/p2

)︸ ︷︷ ︸
all-to-all

(Tmn
n )(Ip ⊗Lm

m/p ⊗ In/p)
(
Ip ⊗(Lm

p ⊗ In/p)(Im/p ⊗DFTn) L
mn/p
m/p

)
︸ ︷︷ ︸

out-of-place scaled FFT library call(
Lp2

p ⊗ Imn/p2

)︸ ︷︷ ︸
all-to-all

(
Ip ⊗(Ln

p ⊗ Im/p)
)︸ ︷︷ ︸

local transpose

. (19)

Eq. (19) makes the minimal necessary changes to the Six Step algorithm to make
it compatible to highly optimized all-to-all communication calls, and to allow for spe-
cialized high-performance local recursive FFT libraries. Reading (19) from right to left,
first each processor performs local data scrambling (local transpose) in their own mem-
ory space to produce the first set of contiguous messages. This cannot be folded into
any FFT library call but could be merged with computation that produces the input
data. Next all processors invoke all-to-all collective communication; all p processors
send one message of size mn/p2 to every of the p processors (including themselves).
Then a modified node FFT—the out-of-place scaled FFT library—is called to perform
the local FFT computation on scrambled data and performs twiddle scaling. Next the
same all-to-all call is invoked a second time, followed by the second modified node
FFT library, an inplace FFT library operating on scrambled data. Note that too make
this stage inplace, one needs to chose (17) and (18) carefully. Lastly, the same all-to-all



collective communication is called a third time to redistribute the data to the target pro-
cessor and a final local transpose unscrambling phase puts the data back into natural
order. This final scrambling cannot be merged with any of the modified libraries but
could be merged with the code consuming the transformed data.

Specialized FFT node libraries. Our derivation extracted the formal definition of
two modified node FFT libraries that are invoked independently but in parallel on all p
processors. The first node library is specified as

(Tmn
n,i )

(Lm
m/p ⊗ In/p)

(
(Lm

p ⊗ In/p)(Im/p ⊗DFTn) L
mn/p
m/p

)
(20)

with Tmn
n,i being the global FFT twiddle factors for processor i. The library specified by

(20) performs an out-of-place batch FFT (m/p FFTs of size n) plus twiddle scaling on
a block-matrix data format. The second library is specified as

DFTm ⊗ In/p (21)

and performs an inplace strided batch FFT (n/p FFTs of size m) that can be viewed
as column FFT. The modified node FFT libraries are automatically generated from the
specification using Spiral’s general size library generation framework [7].

To turn the algorithmic advantage into a performance advantage, the automatically
generated libraries need to be of equivalent performance as FFTW or the vendor library
ESSL. Since we are targeting Global FFT for 128k processors, the largest FFT sizes are
up to mn = 238, and thus m and n can be up to 219. Thus, the node FFT libraries built
from the specifications (20) and (21) need to provide good performance for batches of
large FFTs. The generated libraries must perform all state-of-the-art optimizations in-
cluding SIMD vectorization for the Double FPU [8, 9] and must be parallelized across
the four cores of a BlueGene/P node [9] when running in SMP mode. Further, aggres-
sive memory hierarchy optimizations like buffering and vector recursion need to be
applied [5, 9]. All these optimizations need to be performed fully automatically [7].

Full Global FFT code. In Figure 4 we show the full HPCC Global FFT algorithm
using a partitioned global address space (PGAS) abstraction similar to Unified Parallel
C (UPC). The data vectors x and y are block distributed (mn/p elements reside in the
local memory of each of the p nodes) and all parallel for loops are run across p nodes
of the parallel machine. For simplicity, on-node threading and SIMD vectorization is
omitted.

4 Experimental Results

We experimentally evaluated our optimized Global FFT benchmark on BlueGene/P
configurations from one node card (32 quadcore nodes or 128 cores) up to 32 racks
(32k quadcore nodes or 128k cores), with one process per node. We used the IBM UPC
runtime for process and thread management and as messaging layer. The benchmark
is executed as UPC program that calls external (C/C++) libraries for the on-node FFT
computation. UPC uses IBM’s XL C compiler as backend, and our generated synthe-
sized on-node libraries were compiled with IBM’s XL C compiler and options “-O3
-qarch=440d”.



// HPCC Gloabal FFT
// data is block distributed on p processors
// the p iterations of parallel for loops are executed across p nodes

// all to all data exchange
//
// implements a block transpose of a p x p matrix on vectors of n elements
// exchange between all pairs of p processors packets of size n
//
// input/output: x[p*p*n], block distributed across p processors
// x := Lˆ{pˆ2}_p (x) I_n * x
//
void all_to_all(int p, int n, _Complex double *x) {

int i, j;

par_forall (i=0; i<p; i++)
for (j=i+1; j<p; j++)

SENDRECV(i, j, x+n*(i*p+j), x+n*(i+j*p), n);
}

// local transpose
//
// transposes a n x m matrix of vectors of v complex elements,
// stored in row major order in local node memory
// x := Lˆ{mn}_m (x) I_v * x
//
void transpose(int mn, int m, int v, _Complex double x) {

int i, j, k, n = mn/m;

for (i=0; i<n; i++)
for (j=i; j<m; j++)

for (k=0; k<v; k++)
SWAP(x[v*(i*m+j)+k], x[v*(i+j*n)+k]);

}

// global FFT of size m*n on p processors
// y = DFT_mn * x
//
// input: x[m*n], block distributed across p processors
// output: y[m*n], block distributed across p processors
//
void global_fft(int m, int n, int p, _Complex double y, _Complex double x) {

int i, j, k;

par_forall (i=0; i<p; i++)
transpose(n, p, m/p, x+i*m*n/p);

all_to_all(p, m*n/(p*p), x);

par_forall (i=0; i<p; i++)
fft_scaled(n, m, p, n/p, m*n, m/p, m*n/p, x+i*m*n/p, y+i*m*n/p);

all_to_all(p, m*n/(p*p), x);

par_forall (i=0; i<p; i++)
fft_inplace(m, m*n/p, m, n/p, y+i*m*n/p);

all_to_all(p, m*n/(p*p), x);

par_forall (i=0; i<p; i++)
transpose(m, m/p, n/p, y+i*m*n/p);

}

Fig. 4. HPCC Global FFT implementation using a UPC-like PGAS syntax, implementing (19).



 1

 10

 100

 1000

 10000

1NC 4NC 16NC 2R 4R 8R 16R 32R

BlueGene/P node cards and racks

HPC Challenge Global FFT on BlueGene/P
[G�op/s]

UPC coalesced transpose

Spiral-generated

theoretical peak

6.4T�op/s

Fig. 5. Performance of the HPC Challenge Global FFT Benchmark on BlueGene/P from 128
cores (1 node card) up to 128k cores (32 racks).

We implemented a baseline Global FFT version that uses IBM’s BlueGene/P ESSL
for local FFTs and UPC coalesced transpose (the equivalent of MPI all-to-all) for mes-
saging. This implementation requires explicit data reordering between the UPC messag-
ing and the invocation of ESSL but provides best performance for the FFT computation
and the messaging in separation. This implementation is part of IBM’s winning 2010
HPC Challenge Class II UPC submission.

Figure 5 summarizes the performance results. We run the UPC+ESSL baseline
benchmark on the IBM T.J. Watson BlueGene/P system for up to eight racks. We run
our Spiral-generated library from one node card to 2 racks on the T.J. Watson machine
and on ANL’s “Intrepid” from 4 racks to 32 racks. The Spiral-generated Global FFT
generally outperforms the UPC+ESSL baseline which shows that (a) Spiral’s automat-
ically generated node libraries offer performance competitive with ESSL, and (b) the
memory traffic savings obtained by merging data scrambling with the node-libraries
improves performance. Finally, the Spiral-generated Global FFT reaches 6.4 Tflop/s
on 32 racks of “Intrepid”. The winning 2008 ANL HPC Challenge Class I submission
reported 5 Tflop/s Global FFT performance on the same machine. Thus, the combina-
tion of algorithmic optimization and library generation improved the Global FFT on
“Intrepid” by 1.4 Tflop/s or 28%.

Single Node performance. Figure 6 shows single node performance on the Blue-
Gene/P quadcore PowerPC 450D. We compare the GNU Scientific Library (GSL) [19]
to Spiral-generated sequential and multi-threaded scalar and Double FPU-vectorized
code. Spiral-generated scalar single-core code significantly outperforms the GSL for
in-cache sizes and performs equally to the GSL for memory-bound sizes, demonstrat-



0 

500 

1,000 

1,500 

2,000 

2,500 

4 8 16 32 64 128 256 512 1024 2048 4096 8192 

performance [Mflop/s] 

problem size 

BlueGene/P Single Node (4 cores @ 850 MHz) 

4 threads (450d) 

2 threads (450d) 

single core (450d) 

single core (450) 

GSL 1.5 

Fig. 6. Single node performance on BlueGene/P quadcore CPU.

ing the quality of Spiral’s base line code generation on BlueGene/P. Spiral’s Double
FPU two-way SIMD vector code provides between 50% and 2x speed-up on top of the
scalar base-line. Using all four cores of the BlueGene/P multicore CPU yields speed-up
of 2x–2.5x except for the smallest sizes where parallelization overhead makes sequen-
tial code the fastest choice. Using only two threads is never a winning strategy.

Towards Global FFT on BlueGene/Q. We are in the process of porting the Spiral
Global FFT code generation to the next generation BlueGene machines, BlueGene/Q.
One major difference is that BlueGene/Q features a new 4-way SIMD vector unit called
QPX that is twice as wide as the Double FPU of BlueGene/P. In Figure 7 we show first
performance results of Spiral-generated QPX code run on a single thread of a Blue-
Gene/Q node. We observe that for small FFT sizes Spiral-generated code substantially
outperforms both FFTW and ESSL. We are currently porting and adapting the remain-
ing two levels of parallelism of the Global FFT (intra-node threading and inter-node
message passing) to BlueGene/Q.

5 Conclusion

The increased complexity and performance levels of high performance and supercom-
puting systems makes the automatic generation and tuning of performance libraries
for the petascale and beyond a promising alternative to hand-tuning. In this paper we
present an novel 1D Global FFT algorithm for the HPC Challenge. Extending the Spiral
system, we automatically generate specialized node FFT libraries that support the data
layout required by the messaging layer while providing FFT performance of the native



0 

500 

1,000 

1,500 

2,000 

2,500 

3,000 

3,500 

4,000 

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 

Spiral QPX 

FFTW 3.1.2 

ESSL 5.1 for BlueGene/Q 

Spiral FFT: BlueGene/Q Single Thread @ 1.6 GHz 
performance [Mflop/s] 

Fig. 7. BlueGene/Q QPX single thread performance.

FFT data layout. The resulting reduction in memory traffic and high node performance
enabled us to reach 6.4 Tflop/s on 128k cores of ANL’s BlueGene/P system, improv-
ing performance by 28% over the previously reported Global FFT Class I benchmark.
Finally, we show first single-node results on BlueGene/Q in which we significantly
outperform FFTW and ESSL.

Acknowledgement

The authors acknowledge support by NSF through awards 0702386 and 1116802, and
by the U.S. Army through contract W911NF-10-1-0004. Yevgen Voronenko was par-
tially supported by a Kauffman Entrepreneur Postdoctoral Fellowship. The authors
wish to thank Kalyan Kumaran, Scott Parker and Vitali Morozov of Argonne National
Laboratory for access and help with ANL’s BlueGene/P “Intrepid” and BlueGene/Q
“VEAS”/“VESTA”.

References

1. Luszczek, P., Bailey, D., Dongarra, J., Kepner, J., Lucas, R., Rabenseifner, R., Takahashi, D.:
The HPC Challenge (HPCC) benchmark suite. In: SC06 Conference Tutorial. (2006)

2. Meuer, H.W.: The top500 project: Looking back over 15 years of supercomputing experience
(2008)

3. Takahashi, D.: An implementation of parallel 1-D FFT using SSE3 instructions on dual-core
processors. In: Proc. Int’l Workshop on State-of-the-Art in Scientific and Parallel Computing
(PARA). (2006) 1178–1187

4. Bailey, D.H.: FFTs in external or hierarchical memory. J. Supercomputing 4 (1990) 23–35



5. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the
IEEE 93(2) (2005) 216–231 special issue on “Program Generation, Optimization, and Adap-
tation”.

6. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W., Xiong, J.,
Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE 93(2) (2005) 232–275 special
issue on “Program Generation, Optimization, and Adaptation”.

7. Voronenko, Y., de Mesmay, F., Püschel, M.: Computer generation of general size linear
transform libraries. In: Proc. Code Generation and Optimization (CGO). (2009) 102–113

8. Franchetti, F., Kral, S., Lorenz, J., Püschel, M., Ueberhuber, C.W., Wurzinger, P.: Auto-
matically tuned FFTs for BlueGene/Ls Double FPU. In: High Performance Computing for
Computational Science (VECPAR). Volume 3402 of Lecture Notes in Computer Science.,
Springer (2004) 23–36

9. Franchetti, F., Püschel, M., Voronenko, Y., Chellappa, S., Moura, J.M.F.: Discrete Fourier
transform on multicore. IEEE Signal Processing Magazine, special issue on “Signal Pro-
cessing on Platforms with Multiple Cores” 26(6) (2009) 90–102

10. UPC Consortium: UPC language specifications, v1.2 (2005) Lawrence Berkeley National
Lab Tech Report LBNL-59208.

11. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Ueberhuber, C.W.: Automatic perfor-
mance optimization of the discrete Fourier transform on distributed memory computers.
In: Proc. International Symposium on Parellel and Distributed Processing and Applications
(ISPA). (2006)

12. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM (1992)
13. Chellappa, S., Franchetti, F., Püschel, M.: How to write fast numerical code: A small intro-

duction. In: Lecture Notes in Computer Science. Volume 5235., Springer (2008) 196–259
14. Alam, S., Barrett, R., Bast, M., Fahey, M.R., Kuehn, J., McCurdy, C., Rogers, J., Roth, P.,

Sankaran, R., Vetter, J.S., Worley, P., Yu, W.: Early evaluation of IBM BlueGene/P. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing. SC ’08, Piscataway,
NJ, USA, IEEE Press (2008) 23:1–23:12

15. Team, T.B.G.: Blue Gene/Q: by co-design. Computer Science - Research and Development
(2012) 1–9

16. Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D., Sugavanam, K., Coteus, P.,
Heidelberger, P., Blumrich, M., Wisniewski, R., gara, a., Chiu, G., Boyle, P., Chist, N., Kim,
C.: The ibm blue gene/q compute chip. IEEE Micro 32(2) (2012) 48–60

17. Franchetti, F., Püschel, M.: Fast Fourier Transform. In: Encyclopedia of Parallel Computing.
Springer (2011)

18. Chellappa, S.: Computer Generation of Fourier Transform Libraries for Distributed Memory
Architectures. PhD thesis, Electrical and Computer Engineering, Carnegie Mellon Univer-
sity (2010)

19. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.:
GNU Scientific Library Reference Manual - Third Edition (v1.12). Network Theory Ltd.
(2009)


