
Carnegie MellonCarnegie Mellon

SPIRAL, FFTX, and the
Path to SpectralPACK

Franz Franchetti
Carnegie Mellon University

www.spiral.net

In collaboration with the SPIRAL and FFTX team @ CMU and LBL

This work was supported by DOE ECP and DARPA BRASS

http://www.spiral.net/

Carnegie MellonCarnegie Mellon

Have You Ever Wondered About This?
Numerical Linear Algebra Spectral Algorithms

LAPACK
ScaLAPACK
LU factorization
Eigensolves
SVD
…
BLAS, BLACS
BLAS-1
BLAS-2
BLAS-3

Convolution
Correlation
Upsampling
Poisson solver
…
FFTW
DFT, RDFT
1D, 2D, 3D,…
batch

?

No LAPACK equivalent for spectral methods
 Medium size 1D FFT (1k—10k data points) is most common library call

applications break down 3D problems themselves and then call the 1D FFT library

 Higher level FFT calls rarely used
FFTW guru interface is powerful but hard to used, leading to performance loss

 Low arithmetic intensity and variation of FFT use make library approach hard
Algorithm specific decompositions and FFT calls intertwined with non-FFT code

Carnegie MellonCarnegie Mellon

It Is Worse Than It Seems
FFTW is de-facto standard interface for FFT
 FFTW 3.X is the high performance reference implementation:

supports multicore/SMP and MPI, and Cell processor
 Vendor libraries support the FFTW 3.X interface:

Intel MKL, IBM ESSL, AMD ACML (end-of-life), Nvidia cuFFT, Cray LibSci/CRAFFT

Issue 1: 1D FFTW call is standard kernel for many applications
 Parallel libraries and applications reduce to 1D FFTW call

P3DFFT, QBox, PS/DNS, CPMD, HACC,…

 Supported by modern languages and environments
Python, Matlab,…

Issue 2: FFTW is slowly becoming obsolete
 FFTW 2.1.5 (still in use, 1997), FFTW 3 (2004) minor updates since then
 Development currently dormant, except for small bug fixes
 No native support for accelerators (GPUs, Xeon PHI, FPGAs) and SIMT
 Parallel/MPI version does not scale beyond 32 nodes

Risk: loss of high performance FFT standard library

Carnegie MellonCarnegie Mellon

FFTX: The FFTW Revamp for ExaScale
Modernized FFTW-style interface
 Backwards compatible to FFTW 2.X and 3.X

old code runs unmodified and gains substantially but not fully

 Small number of new features
futures/delayed execution, offloading, data placement, callback kernels

Code generation backend using SPIRAL
 Library/application kernels are interpreted as specifications in DSL

extract semantics from source code and known library semantics

 Compilation and advanced performance optimization
cross-call and cross library optimization, accelerator off-loading,…

 Fine control over resource expenditure of optimization
compile-time, initialization-time, invocation time, optimization resources

 Reference library implementation and bindings to vendor libraries
library-only reference implementation for ease of development

Carnegie MellonCarnegie Mellon

FFTX and SpectralPACK: Long Term Vision
Numerical Linear Algebra Spectral Algorithms

LAPACK
LU factorization
Eigensolves
SVD
…

BLAS
BLAS-1
BLAS-2
BLAS-3

SpectralPACK
Convolution
Correlation
Upsampling
Poisson solver
…
FFTX
DFT, RDFT
1D, 2D, 3D,…
batch

FFTX and SpectralPACK solve the “spectral dwarf” long term

Define the LAPACK equivalent for spectral algorithms
 Define FFTX as the BLAS equivalent

provide user FFT functionality as well as algorithm building blocks
 Define class of numerical algorithms to be supported by SpectralPACK

PDE solver classes (Green’s function, sparse in normal/k space,…), signal processing,…
 Define SpectralPACK functions

circular convolutions, NUFFT, Poisson solvers, free space convolution,…

Carnegie MellonCarnegie Mellon

Example: Hockney Free Space Convolution

*

Carnegie MellonCarnegie Mellon

Example: Hockney Free Space Convolution
fftx_plan pruned_real_convolution_plan(fftx_real *in, fftx_real *out, fftx_complex *symbol,

int n, int n_in, int n_out, int n_freq) {
int rank = 1,
batch_rank = 0,
...
fftx_plan plans[5];
fftx_plan p;

tmp1 = fftx_create_zero_temp_real(rank, &padded_dims);

plans[0] = fftx_plan_guru_copy_real(rank, &in_dimx, in, tmp1, MY_FFTX_MODE_SUB);

tmp2 = fftx_create_temp_complex(rank, &freq_dims);
plans[1] = fftx_plan_guru_dft_r2c(rank, &padded_dims, batch_rank,

&batch_dims, tmp1, tmp2, MY_FFTX_MODE_SUB);

tmp3 = fftx_create_temp_complex(rank, &freq_dims);
plans[2] = fftx_plan_guru_pointwise_c2c(rank, &freq_dimx, batch_rank, &batch_dimx,

tmp2, tmp3, symbol, (fftx_callback)complex_scaling,
MY_FFTX_MODE_SUB | FFTX_PW_POINTWISE);

tmp4 = fftx_create_temp_real(rank, &padded_dims);
plans[3] = fftx_plan_guru_dft_c2r(rank, &padded_dims, batch_rank,

&batch_dims, tmp3, tmp4, MY_FFTX_MODE_SUB);

plans[4] = fftx_plan_guru_copy_real(rank, &out_dimx, tmp4, out, MY_FFTX_MODE_SUB);

p = fftx_plan_compose(numsubplans, plans, MY_FFTX_MODE_TOP);

return p;
} Looks like FFTW calls, but is a specification for SPIRAL

Carnegie MellonCarnegie Mellon

Spiral Technology in a Nutshell
Mathematical FoundationLibrary Generator

Performance Portability Code Synthesis and Autotuning

Presenter
Presentation Notes
Top left: Spiral abstracts a high level description (math) of the algorithm, uses domain knowledge to rewrite it, performs many of the optimizations and matches to architecture at this high level and then translates the high level highly optimized algorithm into high quality code (C, Verilog)Top right: Spiral automatically generated code has been licensed by Intel that incorporates thousands of kernels in Intel’s two libraries IPP and MKL that Intel sells to their independent software vendors (ISV) like Adobe. In particular, IPP comes with IPPgen, a domain that is in its entirety automatically generated by Spiral. The background shows a running list of these thousands of kernels (calls in IPP) of functions generated by Spiral.Bottom right: example of the algorithms that Spiral automatically generates code for: from kernels like linear transforms like the FFT, to full fledged applications, in the radio wireless domain like software defined radio, to generating implementations for synthetic aperture radar, to JPEG, or Viterbi encoders and decoders.Bottom left: Spiral generates code for a wide range of multicore platforms, from Intel x86, to IBM Cell processor, GPUs, FPGA (hardware implementation rather than software), from smartphone platforms (ARM processor) to supercomputers (BlueGene). Spiral generated FFT was part of the IBM led team that won the Gordon Bell performance Award last year (2010).

Carnegie MellonCarnegie Mellon

Algorithms: Rules in Domain Specific Language
Graph AlgorithmsLinear Transforms

Numerical Linear Algebra Spectral Domain Applications
interpolation 2D iFFTmatched

filteringpreprocessing= x

Synthetic aperture radar

Space-
time

adaptive
processing

In collaboration with CMU-SEI

https://en.wikipedia.org/wiki/File:Space-Time_Beamformer_Response.jpg

Carnegie MellonCarnegie Mellon

SPIRAL: Success in HPC/Supercomputing
Global FFT (1D FFT, HPC Challenge)
performance [Gflop/s]

BlueGene/P at Argonne National Laboratory
128k cores (quad-core CPUs) at 850 MHz

 NCSA Blue Waters
PAID Program, FFTs for Blue Waters

 RIKEN K computer
FFTs for the HPC-ACE ISA

 LANL RoadRunner
FFTs for the Cell processor

 PSC/XSEDE Bridges
Large size FFTs

 LLNL BlueGene/L and P
FFTW for BlueGene/L’s Double FPU

 ANL BlueGene/Q Mira
Early Science Program, FFTW for BGQ QPX

6.4 Tflop/s on
BlueGene/P

2006 Gordon Bell Prize (Peak Performance Award) with LLNL and IBM
2010 HPC Challenge Class II Award (Most Productive System) with ANL and IBM

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiqr4Gcz5HXAhVm0YMKHXk9AhwQjRwIBw&url=https://www.electronicsweekly.com/news/research-news/k-computer-claims-new-crown-2015-07/&psig=AOvVaw1L7BwXhkkESqaSzSfImZtF&ust=1509221698763917
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjs4-7zz5HXAhWh8YMKHRt1AzYQjRwIBw&url=https://www.extremetech.com/extreme/122159-what-can-you-do-with-a-supercomputer&psig=AOvVaw0u2pzptIlJwtAbe7IqEd-X&ust=1509221855781721

Carnegie MellonCarnegie Mellon

FFTX Backend: SPIRAL
FFTX powered by SPIRALExecutable

Other C/C++ Code
Platform/ISA
Plug-In:
CUDA

Platform/ISA
Plug-In:
OpenMP

Paradigm
Plug-In:
GPU

Paradigm
Plug-In:
Shared memory

FFT Codelets
CUDA

SPIRAL module:
Code synthesis, trade-offs
reconfiguration, statistics

FFTX call site
fftx_plan(…)
fftx_execute(…)

FFTX call site
fftx_plan(…)
fftx_execute(…)

FFT Solvers
OpenMP

Core system:
SPIRAL engine

Extensible platform
and programming
model definitions

Automatically
Generated
FFTW-like library
components

DARPA BRASS

Carnegie MellonCarnegie Mellon

FFTX: First Results for Hockney on Volta

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici,
T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B.
Van Straalen, P. Colella:
FFTX and SpectralPack: A First Look, Workshop on Parallel
Fast Fourier Transforms (PFFT), to appear.

http://www.spiral.net/doc/fftx

FFTX with SPIRAL and OpenACC:
15 % faster than cuFFT expert interface

FFTX with SPIRAL and OpenACC:
on par with cuFFT expert interface

TITAN V @ CMU

Tesla V100 @ PSC

http://www.spiral.net/docs/fftx

Carnegie MellonCarnegie Mellon

SPIRAL 8.0: Available Under Open Source
 Open Source SPIRAL available

 non-viral license (BSD)
 Initial version, effort ongoing to

open source whole system
 Commercial support via SpiralGen, Inc.

 Developed over 20 years
 Funding: DARPA (OPAL, DESA, HACMS,

PERFECT, BRASS), NSF, ONR, DoD HPC, JPL,
DOE, CMU SEI, Intel, Nvidia, Mercury

 Open sourced under DARPA PERFECT

www.spiral.net

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Püschel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

http://www.spiral.net/
http://users.ece.cmu.edu/%7Efranzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

	Slide Number 1
	Have You Ever Wondered About This?
	It Is Worse Than It Seems
	FFTX: The FFTW Revamp for ExaScale
	FFTX and SpectralPACK: Long Term Vision
	Example: Hockney Free Space Convolution
	Example: Hockney Free Space Convolution
	Spiral Technology in a Nutshell
	Algorithms: Rules in Domain Specific Language
	SPIRAL: Success in HPC/Supercomputing
	FFTX Backend: SPIRAL
	FFTX: First Results for Hockney on Volta
	SPIRAL 8.0: Available Under Open Source

