
FFTX for Micromechanical Stress-Strain Analysis
Anuva Kulkarni

Electrical and Computer Engineering
Carnegie Mellon University

Email: anuvak@andrew.cmu.edu

Daniele G. Spampinato
Electrical and Computer Engineering

Carnegie Mellon University
Email: spampinato@cmu.edu

Franz Franchetti
Electrical and Computer Engineering

Carnegie Mellon University
Email: franzf@cmu.edu

Abstract—Porting scientific simulations to heterogeneous plat-
forms requires complex algorithmic and optimization strategies
to overcome memory and communication bottlenecks. Such oper-
ations are inexpressible using traditional libraries (e.g., FFTW for
spectral methods) and difficult to optimize by hand for various
hardware platforms. In this work, we use our GPU-adapted
stress-strain analysis method to show how FFTX, a new API
that extends FFTW, can be used to express our algorithm without
worrying about code optimization, which is handled by a back-
end code generator.

I. INTRODUCTION

Large-scale simulations involving parallel Fast Fourier
Transforms (FFTs) on distributed heterogeneous systems suf-
fer from bottlenecks due to all-to-all communication and
extreme memory requirements. Algorithm innovations such
as compression or pruning are therefore needed to exploit
data sparsity or symmetries to reduce data movement and
efficiently perform large parallel FFTs. However, while doing
so, it is difficult to optimize these operations across various
heterogenous platforms, as the best strategy depends on the
computing platform and tradeoffs with needs of the overall
simulation. The FFTW interface [1] is not able to express
some of these special pruning and sampling patterns and hence
the user cannot leverage the highly optimized FFTW library
for parallel computations. The FFTX API [2] is designed to
provide a familiar interface for expressing complex mappings
of multidimensional data to well-optimized FFT-based kernels
while a SPIRAL-based code generation back-end [3] handles
optimizations across various hardware platforms. The API acts
as a domain specific language (DSL) for the code generator,
effectively decoupling algorithm specification and code opti-
mization.

In this work, we consider the Micromechanical Analy-
sis of Stress-Strain Inhomogeneities with Fourier transforms
(MASSIF), an FFT-based stress-strain simulation method for
composites [4], [5], [6], [7]. The method discretizes a mi-
crostructure on a regular grid and uses FFTs for solving partial
differential equations (PDE) using Green’s functions. The
FFTs are used to perform convolutions with a Green’s function
tensor. Convolution in each iteration requires computation of
three dimensional (3D) FFTs of tensor fields, thus requiring
extensive storage. The maximum size simulated currently with
MPI and FFTW [7] is 1024 × 1024 × 1024 with a memory
requirement of more than 2TB (computed using knowledge
of 3D double precision variables computed and stored by

MASSIF) [7], and for larger sizes, the memory required
is prohibitively large. Scaling and accelerating the MASSIF
simulation is part of the DoD HPC PETTT project and has a
wide range of applications where micromechanical properties
of polycrystals are studied.

We describe our new algorithmic solution to implement
MASSIF using Graphical Processing Units (GPUs) and show
how FFTX can be used to express it. GPUs provide tremen-
dous compute power, but simply do not have the on-chip
memory to store large 3D FFTs. Hence, our proposed solution
[8] reduces memory requirements using domain decomposi-
tion and adaptive sampling such that GPUs can be used for
domain-local computation. The 3D volume is decomposed into
domains and a domain-local convolution followed by adaptive
sampling is performed under the constraints of GPU memory
while preserving accuracy of the overall convolution result
(across the full volume). The full 3D volume is not materi-
alized on the GPU during FFT computation. Our approach
exploits the sparse structure of the data and symmetries of the
Green’s function and thus involves expressing complicated 3D
sampling patterns. FFTX functionalities allows us to express
these patterns for cubical grains.

In the background section, we briefly describe our proposed
method for porting MASSIF to GPUs. Using this example,
the following section shows how FFTX is used to express
specifications of such an algorithm.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

Amn refers to component (m, n) of the rank-2 tensor A.
Repetition of indices implies a summation over those particular
indices. An important tensor operation is the contraction of in-
dices (denoted by ‘:’). E.g., Cmnk`:Dk` =

P
k

P
`

Cmnk`Dk` =

Emn and yields a rank-2 tensor.
MSC Basic Scheme. The MSC Basic Scheme is a fixed-

point iterative numerical method that computes local stress and
strain fields using Hooke’s law. In this FFT-based PDE solver,
the microstructure (arrangement of grains in the composite
material) is discretized onto a regular grid and a PDE with
periodic boundary conditions is formulated using the stress-
strain constitutive relation and equilibrium conditions. The
MSC Basic Scheme is enumerated as follows. Strain and stress
tensor fields at 3-D grid point x are denoted by ✏(x) and �(x)
respectively. Cmnk`(x) is the rank-4 stiffness tensor at x. E
is initial average strain. The Green’s operator in Fourier space
at frequency point ⇠⇠⇠ is �̂mnk`(⇠⇠⇠). The convergence error is es

and tolerance error is etol. �✏k` is the computed perturbation
in component (k, `) of the strain tensor. Superscripts indicate
iteration number. The iterative scheme continues till conver-
gence is reached. For more details, refer to [4] and [5]. This
is a single time step simulation. An outer loop also simulates
viscoplastic deformation over multiple time steps, however
that is not discussed here.

Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

While es > etol, proceed with following steps.
1) Compute FFT of stress field.

�̂i
mn(⇠⇠⇠) FFT(�i

mn(x))

2) Check convergence in Fourier domain for computational
efficiency as advised in [5].

3) Fourier domain convolution with Green’s function.
�✏̂i+1

k` (⇠⇠⇠) �̂k`mn(⇠⇠⇠) : �̂i
mn(⇠⇠⇠)

4) Update strain in Fourier domain.
✏̂i+1
k` (⇠⇠⇠) ✏̂ik`(⇠⇠⇠)��✏̂i+1

k` (⇠⇠⇠)

5) Inverse transform updated strain field.
✏i+1
k` (x) iFFT(✏̂i+1

k` (⇠⇠⇠))

6) Update stress field.
�i+1

mn (x) Cmnk`(x) : ✏i+1
k` (x)

The convolution with Green’s function requires computation
of 3D FFTs of tensor components of the stress field, hence the
need for extensive resources for large grids. Other quantities
such as crystallographic angles and stiffness tensors are stored
and updated at each grid point. Hence, a simulation size of
1, 024 ⇥ 1, 024 ⇥ 1, 024 is also a large-scale dataset. The
MSC Basic Scheme is implemented in Fortran serial and MPI
parallel version with FFTW [6].

III. MSC ALTERNATE SCHEME

This section describes the proposed algorithm, designed
to be implemented on a CPU-GPU setup. For the purpose
of algorithm development, a MATLAB-Fortran workflow has
been used to build a prototype and analyze preliminary results.

Overview. Initialization of the problem is performed on
the CPU side. In the 3-D composite volume, we observe
that grain interiors have smooth stress and strain fields that
are compressible. Hence, an irregular domain decomposition
method is used to decompose the volume into smaller domains
(grains) with smooth fields. The smooth fields are compressed
to data models that are communicated to J GPUs, thus
reducing data movement and ensuring that GPU memory is
sufficient to process the grain volume. Fixed-point iterations
are performed on the GPU side. In each GPU-based iteration,
domain-local FFTs are used for convolution of the stress
field of a single grain �grain(x) with the Green’s function
in the Fourier domain. We use the term domain-local to
refer to FFT of the signal on each grain. The local con-
volution result (�✏local(x))j (where j refers to the GPU
ID), is compressed using adaptive subsampling. Then, GPUs
communicate between each other to transfer the compressed
(�✏local(x))j . The effect of convolution is summarized by the
�✏total(x) field, which is the sum over all local convolutions
(�✏local(x))j . Once the effect of convolution from other grains
has been taken into account, corresponding strain �✏grain(x)
is extracted from �✏total(x) by each GPU. Now stress and
strain fields can be updated locally for the grain. After this
step, the GPU part of the code is parallel for grain volumes
and stress update for the grain is a self-contained problem.
The algorithm flow is summarized in Figure 2.

Communication
to GPUs

Lossy
Compression

Irregular Domain
Decomposition

Reconstruct grain	
field

Domain Local FFT
&	Convolution

Communication
to other GPUs

IFFT &	Modeling

Stress and strain
update

Convergence test

Initialize

CPU

GPU
Offload

Synchronize

Fig. 2. CPU and GPU tasks for proposed MSC Alternate Scheme. Boxes
highlighted in red are discussed in section III.

CPU Algorithm. Initialize strain ✏0 and stress �0.

✏0 E, �0
mn(x) Cmnk`(x) : ✏0k`(x)

1) Decompose 3-D volume into grains (irregular domains)
using windows.

2) Apply lossy compression to stress, strain fields in each
grain.

3) Communicate data models to GPUs.
The GPU-side MSC Alternate Scheme for iteration i is as

follows.
GPU Algorithm. Reconstruct stress and strain fields for

grain. While es > etol, proceed with following steps.
1) Compute domain-local FFT of stress field for grain.

(a)

Domain	
Decomposition

Lossy
Compression

Communication	
to	GPU

Reconstruction

Domain	local	FFT	+	
Convolution

Tensor	Contraction

Adaptive	Sampling

Update	and	
Convergence	test

CPU GPU

Synchronize

Offload

(b)

Fig. 1. (a) Original MASSIF method computes FFT on full 3D volume.
(b) Proposed domain decomposition algorithm for porting MASSIF to GPUs
operates on local domains to reduce memory requirement [8].

II. BACKGROUND

The original FORTRAN scheme [4] is a fixed-point iterative
numerical method on a 3D grid and is outlined in Fig. 1(a).
Consider a simple example of a n×n×n microstructure grid.
At each grid point, the stress field is a 3×3 tensor, i.e., stress

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 21,2020 at 23:24:08 UTC from IEEE Xplore. Restrictions apply.

Green’s	
function
(Data)

InputOutput

Rank	4	
tensor

Rank	2	
tensor

Rank	2	
tensor

Contraction

:=

(a)

Stride=1
Stride=2
Stride=4

(b)

Fig. 2. (a) Tensor contraction. The cubes represent the 3D data grid. A rank-
2 or rank-4 tensor is present at each point (x,y,z). (b) An example of an
adaptive sampling pattern in a 3D grid.

at each (x,y,z) has nine components. The flow of our proposed
domain decomposition-based method is as shown in Fig. 1(b).
Restricting ourselves to regular domains for simplicity, we
assume k×k×k cubical grains. Our method decomposes the
3D volume into k×k×k domains to be operated on separately.
In a single iteration, we compute domain-local FFTs of each
of the nine tensor components as discussed in [8] followed by
tensor contraction with the rank-4 Green’s function operator
(see Fig. 2(a)).

Since the Green’s function is rapidly decaying in space
domain, convolution results in a low-magnitude and low-
varying field in the volume outside the domain. This important
observation allows us to develop an adaptive sampling scheme
to compress the convolution result and further reduce memory
required by using different resolutions in different parts of the
volume. An example of a required sampling pattern is seen in
Fig. 2(b). We a multi-resolution octree-based sampling strategy
to reduce the memory footprint of the domain-local convo-
lution result. Along with adaptive sampling, the symmetries
in the Green’s function operator can be exploited to further
reduce the memory footprint of the overall algorithm.

III. FFTX PROGRAM

In this section, we outline the FFTX program for our pro-
posed algorithm. FFTX allows us to express the specifications
of the algorithm as a plan composed of various sub-plans.
The FFTX code generation back-end optimizes across the sub-
plans, which was not possible with FFTW. [2] contains more
information on FFTX objects and callback functions.

Fig. 3 outlines the creation of sub-plans. The sub-plans are
provided a number of parameters required to describe the data
involved in a given computation. These descriptors include
information about the dimensionality, strides and offsets of
the input and output data. The fftx_sample sub-plan takes
in various strides and copies to the same output multiple times.
This represents the multi-resolution sampling operation around
the cubic domain as seen in Fig. 2(b).

IV. CONCLUSION

The high-performance execution of FFT-based simulations
on emerging platforms requires algorithm designs that address
memory issues and communication bottlenecks. In this work,
we use FFTX to express one such algorithm design to port

#define NUMSUBPLANS 7
fftx_plan subplans[NUMSUBPLANS];
fftx_plan p; // top-level plan
//... Initialize
// Create zero-initialized temporary arrays
//tmp1, tmp2, tmp3 and tmp4
//They are n x n x n arrays with 3 x 3 tensor at each point

// copy k x k x k input domain into n x n x n tmp1
subplans[0] = fftx_copy_plan(domain, tmp1);// (from,to)

// DFT on the input
subplans[1] = fftx_dft_plan(tmp1);

//Tensor contraction
//In this case we know that output size is the same as tmp2
subplans[2] = fftx_tensor_contraction_plan(tmp2, data,

tmp3, dimensions_to_contract);//(in,data,out,info)

// iDFT on the contracted output
subplans[3] = fftx_inverse_dft_plan(tmp3, tmp4);

//The next plans apply adaptive sampling
subplans[4] = fftx_plan_sample(tmp4, final_output, offset0,

s0); // (from,to,offset,stride)
subplans[5] = fftx_plan_sample(tmp4, final_output, offset1,

s1);
subplans[6] = fftx_plan_sample(tmp4, final_output, offset2,

s2);

// create the top level plan. this copies the sub-plan
pointers

p = fftx_plan_compose(NUMSUBPLANS, subplans);

// plan to be used with fftx_execute()
return p;

Fig. 3. FFTX plan for porting MASSIF to GPUs.

the MASSIF code to GPUs. FFTX’s SPIRAL-based code-
generation back-end helps address fundamental problems such
as (1) performance portability across the ever-changing land-
scape of parallel platforms, and (2) verifiable correctness of
sophisticated floating-point code. SPIRAL’s ability to auto-
matically map computational kernels across a wide range of
computing platforms to highly efficient code is a big advantage
of FFTX.

REFERENCES

[1] M. Frigo et al., “The design and implementation of FFTW3,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

[2] F. Franchetti et al., “FFTX and SpectralPack: A First Look,” in IEEE
International Conference on High Performance Computing, Data, and
Analytics (HiPC), 2018.

[3] F. Franchetti et al., “SPIRAL: Extreme Performance Portability,” Pro-
ceedings of the IEEE, vol. 106, no. 11, pp. 1935–1968, Nov 2018.

[4] H. Moulinec et al., “A numerical method for computing the overall re-
sponse of nonlinear composites with complex microstructure,” Computer
methods in applied mechanics and engineering, vol. 157, no. 1-2, pp.
69–94, 1998.

[5] J. Michel et al., “A computational method based on augmented La-
grangians and fast Fourier Transforms for composites with high contrast,”
CMES - Computer Modeling in Engineering and Sciences, vol. 1, pp. 79–
88, 01 2000.

[6] R. A. Lebensohn, “N-site modeling of a 3D viscoplastic polycrystal using
fast Fourier transform,” Acta Materialia, vol. 49, no. 14, pp. 2723–2737,
2001.

[7] V. Tari et al., “Validation of micro-mechanical fft-based simulations using
high energy diffraction microscopy on ti-7al,” Acta Materialia, vol. 154,
8 2018.

[8] A. Kulkarni et al., “Large-scale algorithm design for parallel FFT-based
simulations on GPUs,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Nov 2018, pp. 301–305.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 21,2020 at 23:24:08 UTC from IEEE Xplore. Restrictions apply.

