
FFTX and SpectralPack: A First Look

Franz Franchetti, Daniele G. Spampinato, Anuva Kulkarni, Doru Thom Popovici, Tze Meng Low
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA, USA

{franzf, spampinato}@cmu.edu, anuvak@andrew.cmu.edu, {dpopovic, lowt}@cmu.edu

Michael Franusich
SpiralGen, Inc.

Pittsburgh, PA, USA
mike.franusich@spiralgen.com

Andrew Canning, Peter McCorquodale, Brian Van Straalen, Phillip Colella
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
{acanning, pwmccorquodale, bvstraalen, pcolella}@lbl.gov

Abstract—We propose FFTX, a new framework for building
high-performance FFT-based applications on exascale ma-
chines. Complex node architectures lead to multiple levels of
parallelism and demand efficient ways of data communica-
tion. The current FFTW interface falls short in maximizing
performance in such scenarios. FFTX is designed to en-
able application developers to leverage expert-level, automatic
optimizations while navigating a familiar interface. FFTX
is backwards compatible to FFTW and extends the FFTW
Interface into an embedded Domain Specific Language (DSL)
expressed as a library interface. By means of a SPIRAL-based
back end, this enables build-time source-to-source translation
and advanced performance optimizations, such as cross-library
calls optimizations, targeting of accelerators through offload-
ing, and inlining of user-provided kernels. We demonstrate the
use of FFTX with the prototypical example of 1D and 3D
pruned convolutions and discuss future extensions.

Keywords-FFT; exasclale; code generator; high-performance;

I. INTRODUCTION

The Discrete Fourier Transform (DFT) — and in par-
ticular its implementation using Fast Fourier Transform
(FFT) [1], [2] algorithms — is a fundamental component for
the design of scientific applications suitable for the emerging
exascale computing ecosystem. Application domains include
material science, chemistry, molecular dynamics, and cos-
mology. Some examples are FFT-based differential equation
solvers to compute properties of materials such as stress
and strain [3], simulation of incompressible flows [4], plane
wave based electronic structure methods [5] [6] and particle-
in-cell (PIC) codes [7].

Capturing application-specific properties of the FFTs is
very important to enable high-performance execution on
emerging platforms. For example, applications where a large
subset of the inputs or outputs is either set to zero or not
computed at all should exploit the zero structures to reduce
data movements within the memory hierarchy on a node
or across the network. The structure of multidimensional
FFTs provide opportunities for parallelism at multiple levels

— SIMD, threads, accelerators, and distributed systems.
The best strategy for exploiting these opportunities strongly
depends on the details of the use case and of the computing
platform, as well as tradeoffs with other needs of the
application in which the transforms are embedded.

Conventional FFT-based implementation approach
and its limits. The implementation strategy for most of
today’s large science applications that depend on FFTs
constists in transforming multidimensional problems into a
sequence of 1D FFT calls, with the latter being performed
by a library. Over the last decade or so the FFTW API
became the de-facto standard FFT interface [8], [9], [10].
Vendors that provide FFT libraries like Intel, Cray, and
IBM may still provide their own proprietary interface for
backwards compatibility reasons, but all current vendor
high-performance libraries, including Intel MKL [11], IBM
ESSL [12], and Nvidia cuFFT [13], implement (at least a
subset) of the FFTW interface. Thus, FFTW defines the
standard FFT library interface and oftentimes is considered
a key component of today’s applications.

However, the approach of building up high-performance
implementations out of calls to 1D FFTW kernels is break-
ing down on the current and emerging HPC platforms, for
two reasons: First, node architectures have become more
complex. Multiple cores and accelerators lead to multiple
levels of parallelism, including threading and SIMD/SIMT.
In addition, there are on-node complex memory hierarchies
that are to varying extents user-controlled, and across which
it is expensive to move data. This leads to more complex
mappings of multidimensional FFT-based applications to the
core 1D FFTs. Some of these are simply not expressible in
the current FFTW interface; others can be expressed, but
with significant programming effort, and often below the
theoretically-predicted performance due to unexpected and
opaque behavior of the FFT library software. Second, FFTW
is no longer supported. The system comprises a high-level
domain-specific language, a symbolic transformation/code

generation system, and an autotuning infrastructure that
were essential in developing a general-purpose FFT high-
performance library on single-processor architectures avail-
able between mid-1990s and mid-2000s. However, current
support of FFTW is limited to volunteer contributions. As a
result, the extensions to support new node architectures are
more brittle and provide less coverage.

The FFTX interface. To overcome the limitations dis-
cussed above, we propose FFTX, a new framework for build-
ing FFT-based applications. In particular, FFTX provides:
(1) A backwards-compatible approach that builds on the
FFTW interface but extends it to enable extraction of high-
performance on exascale machines; and (2) an evolutionary
approach that enables applications to leverage higher level
than 1D FFT building blocks and enables cross-block opti-
mization.

SpectralPack. Eventually, the insights provided by open-
ing up the design/tuning space between FFTX and full exas-
cale applications will lead to new ways of designing them to
obtain high-performance. Ultimately, our goal is to leverage
such a co-design process releasing integrated FFT-based
packages as a library, called SpectralPack. SpectralPack will
provide a set of template computations covering a variety of
spectral applications. In this paper we show the composition
of a plan for computing a 3D convolution for the solution
of constant-coefficient PDEs using the method of Green’s
functions as a prototypical example.

This paper is organized as follows. First, we discuss
related work in Section II. Next, in Section III, we describe
more in details the FFTX interface and in Section IV we
provide early examples of applications. Finally, we conclude
by describing the current and future work behind FFTX in
Section V and draw our conclusions in Section VI.

II. RELATED WORK

As discussed in Section I, the current status of FFT
libraries and FFTW poses a significant risk to exascale
application development. We now detail the alternatives to
our proposed plan and the associated risks.

Rely on FFTW. To the best of our knowledge, the original
development team of FFTW does not actively develop
FFTW. Except for very minor fixes to the last minor revision
(FFTW 3.3) in 2011, only a small number of fixes occurred
since (with FFTW 3.3.7 the latest). FFTW continues to work
decently on a number of (small core count) multicore CPUs
with narrow SIMD vectors and small MPI node counts.
Performance becomes an issue for some microarchitectures
with wider SIMD vectors, large core counts, more than 32
MPI ranks, batch FFTs, and many important cases sup-
ported by the FFTW guru interface. The FFTW benchFFT
webpage is outdated with a 2004/2006-era Pentium 4s and
Xeons being the most modern profiled CPUs. FFTW does
not support accelerators and GPUs. A major redesign and
rewrite would be required to produce an FFT version that

Table I
FFTW LIBRARY INTERFACE SUPPORTED BY COMMERCIAL VENDOR
LIBRARIES. MISSING FUNCTIONALITIES ARE DENOTED AS “NO” OR

“PARTIAL”. ROUTINES CLASSIFIED AS “MIXED” ARE SUPPORTED BUT
NOT ALL SIZES ARE OPTIMIZED TO THE SAME EXTEND. WE DENOTE

HIGHER DIMENSIONAL FFT WITH ND FFT.

FFTW Features Intel MKL IBM ESSL Nvidia cuFFT
Complex DFTs - Including Real-to-Complex and Complex-to-Real

1D, 2D, 3D Mixed Mixed Mixed
nD FFT, n ą 3 Mixed No No
Batched FFT Mixed Partial Mixed
Guru Interface No No Partial
Real DFTs
1D, 2D, 3D Partial Partial No
nD FFT, n ą 3 No No No
Batched FFT No No No
Guru Interface No No No
DCTs and DSTs Mixed Partial No

takes advantage of current and expected exascale machines.
The trade-off of code size and complexity vs. performance
makes it hard to add support for modern accelerators and
advanced architectural features in a way that provides high-
performance. This can be seen in the experimental Cell
BE FFTW version and in FFTWs SIMD vectorization. Due
to the complexity of the system only a small number of
people who can understand it well enough could redesign
and maintain it. Overall, one cannot expect that FFTW will
be updated for the needs of exascale software, either by the
original authors or the open source community.

Rely on vendors. FFTW has become the de-facto stan-
dard FFT interface in HPC. Intel (with its Math Kernel
Library, MKL [11], and the Cluster MKL), IBM (with
ESSL [12] and PESSL), and Nvidia (with cuFFT [13])
maintain HPC FFT libraries. AMD and Cray use FFTW
as their FFT library. Both MKL and ESSL provide their
own native interface and implement a mapping to parts of
the FFTW interface. Neither (Cluster) MKL nor (P)ESSL
nor cuFFT implement the full FFTW interface, and im-
plementation/optimization quality varies. There exist some
highly optimized routines (e.g., complex 2-power FFTs)
while other kernels use some translation routine and can
incur (very) high overheads. Performance can vary by 2x
to 10x or more. This means a number of routines run at
10% of the efficiency of 2-power FFTs. Table I below
provides a detailed assessment of the interface of vendor
FFT libraries. Significant portions of the FFTW interface are
not supported by commercial vendor libraries. These missing
functionalities are denoted as “No” or “Partial” in the table
above. Routines that are supported by commercial vendor
libraries are classified as “Mixed” when not all sizes are
optimized to the same extent.

This lack of deployment of a fully-featured FFT software
stack on the part of the hardware vendors is unlikely to
change. FFT libraries do not carry the same weight as BLAS
libraries for vendors since FFTs do not play any role for

the Top500 ranking, and the HPC Challenge ranking that
included FFTs did not have the hoped-for impact. Further,
the optimization space for FFTs is much larger than for
numerical linear algebra as the algorithm strongly depends
on the problem size and properties, requiring a specialized
software and staffing infrastructure that the hardware ven-
dors are unlikely to support.

III. FFTX OVERVIEW

FFTX provides two key components that we describe
more in details in this section: A library interface and a
code generator backend.

A. FFTW as DSL

To enable higher-level optimizations, a faithful embedded
DSL representation of high-level mathematical description
of algorithm/implementation space is necessary. FFTX ex-
tends the FFTW Interface into an embedded DSL, expressed
as a library interface. The FFTX interface is backwards
compatible to FFTW 2.X and 3.X so that legacy code
using FFTW runs unmodified and gains substantially on
hardware to which FFTX has been ported. The gains can
be substantial but not reach full potential when only using
legacy mode. To express those additional opportunities for
performance, FFTX provides a small number of new features
beyond the FFTW interface to express algorithmic features
such as futures/delayed execution, offloading, data place-
ment, callback kernels, and sparsity of inputs or outputs.
Such changes have the potential to extract much higher
performance than standard FFTW calls since higher level
operations and new hardware features can be addressed. This
interface is designed as an embedded DSL, for which we
provide a standard C/C++ reference library implementation
that enables rapid assessment of the interface by applications
developers.

B. A code generation backend

FFT-based application kernels implemented using the ex-
tended FFTW interface described above are treated as spec-
ifications. This enables build-time source-to-source trans-
lation and advanced performance optimizations, such as
cross-library call and cross library optimization, targeting
of accelerators through off-loading, and inlining of user-
provided kernels. Our approach allows for fine control
over resource expenditure during the optimization. Users
can control compile-time, initialization-time, invocation time
optimization resources if they need to.

The core code generation, symbolic analysis, and au-
totuning software for this project will be based on SPI-
RAL [14], [15], [16]. SPIRAL automatically maps compu-
tational kernels across a wide range of computing platforms
to highly efficient code, and proves the correctness of the
synthesized code [17]. This addresses two fundamental prob-
lems that software developers are faced with: performance

portability across the ever-changing parallel platforms, and
verifiable correctness of sophisticated floating-point code.
The problem is attacked as follows: A formal framework
captures computational algorithms, computing platforms,
and program transformations of interest, using a unifying
mathematical formalism called operator language (OL) [18].
Then the problem is cast as synthesizing highly optimized
computational kernels for a given machine as a strongly
constrained optimization problem solved by a multi-stage
rewriting system. Since all rewrite steps are semantics-
preserving operations, SPIRAL’s approach allows to for-
mally prove the equivalence between the kernel specification
and the synthesized program. The SPIRAL approach has
many of the same structural components as FFTW a high-
level DSL, symbolic analysis, code generation, and auto-
tuning. However, the approach used by SPIRAL generates
new source code for both the FFT calls and the glue code
(e.g. pointwise operations and data motion) in an FFT-based
application.

In the next section we will show how the FFTX interface
can be used to describe a simple example of a pruned
convolution and preliminary code generated by the SPIRAL-
based backend.

IV. EXAMPLE APPLICATIONS

Constant-coefficient PDEs are often solved using the
method of Green’s functions, which involves convolution of
the input signal with the Green’s function. This convolution
is performed in the Fourier domain to reduce complexity.

Large parallel FFTs are memory-bound and hence become
a communication bottleneck on shared memory systems/G-
PUs. Depending on the problem, if a large number of inputs
or outputs is zero or not computed, pruning can be used to
exploit these properties of the data and have a large reduction
in the communication overhead.

We illustrate the use of FFTX for a simple 1D pruned con-
volution example. We begin by introducing how a program
is structured when using FFTX.

A. Structure of an FFTX-based application

Figure 1 shows the structure of an application that make
use of the FFTX interface. The fftx.h header file contains the
definition of all types, macros, and functions necessary to
write up an FFTX application. The Appendix lists the math-
ematical definition of the functions used in this example.

The calls to the fftx init and fftx shutdown functions
identify an FFTX region in the program. They set up the
environment with appropriate options, such as declaring
that FFTX should operate in high-performance mode (i.e.,
enabling symbolic analysis, code generation, and autotuning
in the backend) as shown in Fig. 1. Next, comes the
definition of the computation. Similarly to FFTW, this is
achieved by first building a plan, i.e., a sequence of com-
putational and data movement steps that, when executed,

1 # i n c l u d e < f f t x . h>
2
3 f f t x p l a n p r u n e d r e a l c o n v o l u t i o n p l a n (. . .) {
4 / / p r o d u c e s an f f t x p l a n (s e e Fig . 2)
5 }
6
7 i n t main () {
8 / / d e c l a r e i n p u t , o u t p u t , and G[k]
9 f f t x r e a l ∗ in , ∗ o u t ;

10 f f t x c o m p l e x ∗G k ;
11 f f t x p l a n p ;
12
13 / / i n i t i a l i z e FFTX
14 f f t x i n i t (FFTX HIGH PERFORMANCE) ;
15 / / a l l o c / i n i t i n p u t , G[k] , and o u t p u t
16 . . .
17 / / b u i l d FFTX p lan
18 p = p r u n e d r e a l c o n v o l u t i o n p l a n (in , out , G k ,
19 n , n in , n out , n f r e q) ;
20 / / e x e c u t e once t h e pruned c o n v o l u t i o n
21 f f t x e x e c u t e (p) ;
22 / / c l e a n u p
23 . . .
24 / / s h u t down FFTX
25 f f tx shutdown () ;
26 }

Figure 1. Structure of an FFTX application.

applies the computation to the application input to obtain its
output. For example, Fig. 1, lines 22-23, show the use of
function pruned real convolution plan to build the plan for
computing a pruned convolution. We will soon discuss its
content. Here, we only need to stress two apsects: 1) Writing
such functions is the only point where the application expert
has to apply her knowledge, 2) The resulting plan is used
as a specification by FFTX and eventually transformed in
highly optimized code that computes it. A plan once built
can be executed once or many times by simply passing the
plan to the fftx execute function. Next, we focus on how the
FFTX interface can be used to build a computational plan
for 1D pruned convolution.

B. 1D pruned convolution

This example considers an N -point pruned real convolu-
tion in 1D using FFTX. For a discrete input signal ~ρ, we
assume only first Ns elements are non-zero. For the output,
only the last Nd elements are requested.

We select the identity function as a simple convolution
kernel ~G.

The convolution operation can be written as

p~ρ ˚ ~Gqx “
ÿ

ρx´x1Gx1 (1)

The Fourier transform of the convolution kernel is real-
valued and an even function. Using .̃ to denote the Fourier
transform and k to denote the wavenumber,

G̃k “
1

N
, k P r0, ¨ ¨ ¨ , N ´ 1s (2)

A real to complex FFT is performed on ~ρ to get the conju-
gate even signal ρ̃. Because of the conjugate even symmetry,
we only need to store half of this signal. Similarly, G̃ is
symmetric so once more, only half of the signal is stored.
Hence, for both signals we store r0 ¨ ¨ ¨ N2 s points where N
is even. After a pointwise multiplication of ρ̃ and G̃, inverse
FFT transform is computed to get Nk “ N

2 ` 1 complex
elements in frequency domain.

Plan composition using FFTX. Implementing the pruned
1D convolution in FFTX requires the the construction of the
plan shown in Fig. 2.

The overall plan is composed of a sequence of subplans
each performing one of the five steps described above. In
particular, a zero vector of length N is created (Fig. 2,
line 37) and used to created the zero padding of the input
signal of length Ns (Fig. 2, l. 40-41). Next, the 1D real
DFT is computed (Fig. 2, l. 45-46) followed by a pointwise
multiplication with Ĝ (Fig. 2, l. 50-53). Finally, the inverse
DFT is taken (Fig. 2, l. 57-58) and the last Nd elements
from its output signal are stored in the output vector (Fig. 2,
l. 61). Note, how the different subplans depend in general
on a number of parameters required to describe the data
involved in a given computation. These descriptors include
information about the dimensionality of the data (i.e, its rank
r k) and an fftx iodim or fftx iodimx object with information
about strides and offsets of the input and output data. More
specifically, an M -dimensional cube is described by an array
of M such objects. For example, object p d, used in Fig. 2,
l. 45, is of type fftx iodim. This is the analogous of FFTW’s
fftw iodim and describes that the DFT is computed on N
points with unit input and output stride (see its definition
in Fig. 2, l. 20). The object f dx used in Fig. 2, l. 51,
is of type fftx iodimx. This type extends fftx iodim with
additional information such as the offset of the data and
also includes the description of third multidimensional cube
that in the call to fftx plan guru pointwise c2c is used to
describe access to the Green’s function. The definition of
fftx iodimx is given in Fig. 3.

We mentioned that the data associated to the Green’s
function is described by object f dx along with the input
signal ρ̂. The actual pointwise scaling operation between
the two complex vectors is described by the cplx scaling
parameter passed in Fig. 2, l. 52. This is a function composed
by the FFTX pointwise helper macros shown in Fig. 4.

These and others provided by the FFTX interface define a
simple two-operand language similar to x86 ASM that can
be used by the Spiral backend to optimize the computation
across subplans. A preliminary example of code generated
for the entire application using the SPIRAL-based back end
is provided in Fig. 5.

C. 3D pruned convolution

Now we extend the above 1D example to a 3D case. For
a 3D input signal ρ, we assume only first Ns elements are

1 # d e f i n e FFTX MODE (FFTX ESTIMATE | FFTX OBSERVE)
2 # d e f i n e FFTX MODE SUB (FFTX MODE | FFTX SUBPLAN)
3
4 f f t x t e m p r e a l tmp1 , tmp4 ;
5 f f tx temp complex tmp2 , tmp3 ;
6
7 f f t x p l a n p r u n e d r e a l c o n v o l u t i o n p l a n (
8 f f t x r e a l ∗ in , f f t x r e a l ∗out ,
9 f f t x c o m p l e x ∗G k ,

10 i n t N, i n t N s , i n t N d , i n t N k) {
11
12 i n t rk = 1 , b rk = 0 , / / rank 1 + no b a t c h
13 n subp = 5 ; / / r e q u i r e s 5 FFTX s u b p l a n s
14
15 / / i n t e r m e d i a t e sub´p l a n s and top´l e v e l p lan
16 f f t x p l a n p l a n s [5] , p ;
17
18 / / FFTX iod im d e f i n i t i o n s f o r 1D + p r u n i n g
19 / / zero´padding t o N r e a l e l e m e n t s a t s t r i d e 1
20 f f t x i o d i m p d = { N, 1 , 1 } ,
21 / / N/2+1 complex e l e m e n t s i n f r e q u e n c y domain
22 f d = { N k , 1 , 1 } ,
23 / / no b a t c h i n g
24 b d = { 1 , 1 , 1 } ;
25
26 / / i n p u t : N s r e a l e l e m e n t s a t u n i t s t r i d e
27 f f t x i o d i m x i dx = { N s , 0 , 0 , 0 , 1 , 1 , 1 } ,
28 / / o u t p u t : N d r e a l e l e m e n t s a t u n i t s t r i d e
29 o dx = { N d , N ´ N d , 0 , 0 , 1 , 1 , 1 } ,
30 / / n /2+1 complex e l e m e n t s i n f r e q u e n c y domain
31 f dx = { N k , 0 , 0 , 0 , 1 , 1 , 1 } ,
32 / / no b a t c h i n g
33 b dx = { 1 , 0 , 0 , 0 , 1 , 1 , 1 } ;
34
35 / / c r e a t e zero´ i n i t i a l i z e d rank´d i m e n s i o n a l
36 / / t emporary f o r zero´padding t h e i n p u t
37 tmp1 = f f t x c r e a t e z e r o t e m p r e a l (rk , &p d) ;
38
39 / / copy rank D́ da ta i n t o z e r o e d temporary
40 p l a n s [0] = f f t x p l a n g u r u c o p y r e a l (rk ,
41 &i dx , in , tmp1 , FFTX MODE SUB) ;
42
43 / / RDFT on t h e padded da ta
44 tmp2 = f f tx crea te temp complex (rk , &f d) ;
45 p l a n s [1] = f f t x p l a n g u r u d f t r 2 c (rk , &p d ,
46 b rk , &b d , tmp1 , tmp2 , FFTX MODE SUB) ;
47
48 / / p o i n t w i s e o p e r a t i o n
49 tmp3 = f f tx crea te temp complex (rk , &f d) ;
50 p l a n s [2] = f f t x p l a n g u r u p o i n t w i s e c 2 c (rk ,
51 &f dx , b rk , &b dx , tmp2 , tmp3 , G k ,
52 (f f t x c a l l b a c k) c p l x s c a l i n g , / / See Fig . Z
53 FFTX MODE SUB | FFTX PW POINTWISE) ;
54
55 / / iRDFT on t h e s c a l e d da ta
56 tmp4 = f f t x c r e a t e t e m p r e a l (rk , &p d) ;
57 p l a n s [3] = f f t x p l a n g u r u d f t c 2 r (rk , &p d ,
58 b rk , &b d , tmp3 , tmp4 , FFTX MODE SUB) ;
59
60 / / copy o u t t h e rank D́ da ta o f i n t e r e s t
61 p l a n s [4] = f f t x p l a n g u r u c o p y r e a l (rk , &o dx ,
62 tmp4 , out , FFTX MODE SUB) ;
63
64 / / c r e a t e t h e t o p l e v e l p lan .
65 p = f f tx p lan compose (n subp , p l a n s ,
66 FFTX MODE) ;
67
68 / / p lan used w i t h f f t x e x e c u t e () ´ See Fig . 1
69 re turn p ;
70 }

Figure 2. Plan for computing the pruned 1D FFT using FFTX.

1 t y p e d e f s t r u c t {
2 i n t n , / / Leng th a long d i m e n s i o n
3
4 i o f s , / / I n p u t , o u t p u t and da ta s t r i d e
5 oofs , / / A l low s h i f t or r e v e r s a l
6 dofs , / /
7
8 i s , / / I n p u t s t r i d e
9 os , / / Ou tpu t s t r i d e

10 ds ; / / I n d e p e n d e n t da ta s t r i d e ,
11 / / used t o c a p t u r e s y m m e t r i e s
12 } f f t x i o d i m x ;

Figure 3. The fftx iodimx descriptor.

1 / / p o i n t w i s e s c a l i n g f u n c t i o n :
2 / / complex m u l t i p l y by symbol
3 void c p l x s c a l i n g (f f t x c o m p l e x ∗ in ,
4 f f t x c o m p l e x ∗out ,
5 f f t x c o m p l e x ∗ d a t a) {
6
7 FFTX COMPLEX TEMP(t) ;
8 FFTX COMPLEX MOV(t , i n) ;
9 FFTX COMPLEX MULT(t , d a t a) ;

10 FFTX COMPLEX MOV(out , t) ;
11
12 }

Figure 4. Pointwise scaling function composed by FFTX pointwise helper
macros.

non-zero in each dimension. For the output, only the last Nd
elements are requested in each dimension.

Plan composition using FFTX. The FFTX implemen-
tation for the 3D pruned convolution requires exactly the
same sequence of plans used for the 1D case and shown in
Fig. 2. The only difference compared to the 1D case is the
definition of fftx iodim and fftx iodimx objects for 3D cubes
as shown in Fig. 6.

Operations this time require accessing the data along three
different dimensions. These accesses are described by 3D
arrays of fftx iodim and fftx iodimx objects, one for each
dimension. For example, the array o dx defined in Fig. 6,
l. 27-31, is used to read a corner of size N3

d elements out
of a cube of size N3 starting from offset pN ´ Nd, N ´

Nd, N ´Ndq.

D. Poisson solver with Method of Local Correction

Consider the problem of solving Poisson’s equation in free
space. This solution is required in many scientific computing
applications such as cosmological simulations, molecular
dynamics and methods for solving viscous incompressible
flows [19], [20], [4].

∆pΦq “ ρ,

where ρ : R3 Ñ R is the charge distribution with support
on a compact set D “ supppρq Ă R3 and ∆ is the Laplace
operator. We seek a solution Φ : R3 Ñ R such that far-field

1 void prconv8 3 5 (double ∗Y, double ∗X,
2 double S2 [1 0]) {
3 double a149 , a150 , a151 , a152 , s205 ,
4 s206 , s207 , s208 , s209 , s210 , s211 ,
5 s212 , s213 , s214 , s215 , s216 , s217 ,
6 s218 , s219 , s220 , s221 , s222 , t77 ,
7 t78 , t79 , t 8 0 ;
8 s205 = (∗ (X) + ∗ ((X + 2))) ;
9 s206 = (∗ (X) ´ ∗ ((X + 2))) ;

10 s207 = (∗ ((X + 1)) + ∗ ((X + 3))) ;
11 s208 = (∗ ((X + 1)) ´ ∗ ((X + 3))) ;
12 s209 = (∗ (S2)∗ (s205 + s207)) ;
13 s210 = (∗ ((S2 + 8)) ∗ (s205 ´ s207)) ;
14 a149 = (0 .70710678118654757∗∗ ((X + 1))) ;
15 a150 = (0 .70710678118654757∗∗ ((X + 3))) ;
16 s211 = (a149 ´ a150) ;
17 s212 = (a149 + a150) ;
18 t 7 7 = (∗ (X) + s211) ;
19 t 7 8 = (∗ ((X + 2)) + s212) ;
20 t 7 9 = (∗ (X) ´ s211) ;
21 t 8 0 = (s212 ´ ∗ ((X + 2))) ;
22 s213 = ((∗ ((S2 + 2))∗ t 7 7)
23 + (∗ ((S2 + 3))∗ t 7 8)) ;
24 s214 = ((∗ ((S2 + 3))∗ t 7 7)
25 ´ (∗ ((S2 + 2))∗ t 7 8)) ;
26 s215 = ((∗ ((S2 + 6))∗ t 7 9)
27 + (∗ ((S2 + 7))∗ t 8 0)) ;
28 s216 = ((∗ ((S2 + 7))∗ t 7 9)
29 ´ (∗ ((S2 + 6))∗ t 8 0)) ;
30 s217 = (s209 + s210) ;
31 s218 = (s209 ´ s210) ;
32 a151 = (0 .70710678118654757∗ (s213 ´ s215)) ;
33 a152 = (0 .70710678118654757∗ (s214 + s216)) ;
34 s219 = (2 . 0 ∗ ((∗ ((S2 + 4))∗ s206)
35 + (∗ ((S2 + 5))∗ s208))) ;
36 s220 = (2 . 0 ∗ ((∗ ((S2 + 5))∗ s206)
37 ´ (∗ ((S2 + 4))∗ s208))) ;
38 s221 = (s218 + s220) ;
39 s222 = (2 . 0 ∗ (a151 + a152)) ;
40 ∗ (Y) = (s221 ´ s222) ;
41 ∗ ((Y + 1)) = ((s217 + s219)
42 ´ (2 . 0 ∗ (s213 + s215))) ;
43 ∗ ((Y + 2)) = ((s218 ´ s220)
44 ´ (2 . 0 ∗ (a151 ´ a152))) ;
45 ∗ ((Y + 3)) = ((s217 ´ s219)
46 + (2 . 0 ∗ (s214 ´ s216))) ;
47 ∗ ((Y + 4)) = (s221 + s222) ;
48 }

Figure 5. Code generated by the FFTX back end for the plan in Fig. 2
setting N “ 8, Ns “ 3, and Nd “ 5.

behavior is

Φp~xq “
Q

4π||~x||
` op

1

||~x||
q as ||~x|| Ñ 8

Q “

ż

D

ρd~x,

which can be expressed as convolution with the Green’s
function

Φp~xq “

ż

D

Gp~x´ ~yqρp~yqd~y ” pG ˚ ρqp~xq, (3)

where
Gp~xq “

1

4π||~x||2
. (4)

1 f f t x p l a n p r u n e d r e a l c o n v o l u t i o n p l a n (. . .) {
2 i n t rk = 3 , / / 3D = rank 3
3 b rk = 0 , / / no b a t c h
4 n subp = 5 ; / / need 5 FFTX s u b p l a n s
5 f f t x p l a n p l a n s [5] ;

/ / i n t e r m e d i a t e sub´p l a n s
6 f f t x p l a n p ; / / top´l e v e l p lan
7
8 / / FFTX iod im d e f i n i t i o n s f o r 3D + p r u n i n g
9 f f t x i o d i m p d [] = {

10 { N, 1 , 1 } ,
11 { N, N, N } ,
12 { N, N∗N, N∗N }
13 } ,
14 f d [] = {
15 { N, 1 , 1 } ,
16 { N, N, N } ,
17 { N k , N∗N, N∗N }
18 } ,
19 / / no b a t c h i n g
20 b d = { 1 , 1 , 1 } ;
21
22 f f t x i o d i m x i dx [] = {
23 { N s , 0 , 0 , 0 , 1 , 1 , 1 } ,
24 { N s , 0 , 0 , 0 , N s , N, 1 } ,
25 { N s , 0 , 0 , 0 , N s∗N s , N∗N, 1 }
26 } ,
27 o dx [] = {
28 { N d , Ń N d , 0 , 0 , 1 , 1 , 1 } ,
29 { N d , Ń N d , 0 , 0 , N, N d , 1 } ,
30 { N d , Ń N d , 0 , 0 ,
31 N∗N, N d∗N d , 1 }
32 } ,
33 f dx [] = {
34 { N, 0 , 0 , 0 , 1 , 1 , 1 } ,
35 { N, 0 , 0 , 0 , N, N, N } ,
36 { N k , 0 , 0 , 0 , N∗N, N∗N, N∗N }
37 } ,
38 / / no b a t c h i n g
39 b dx = { 1 , 0 , 0 , 0 , 1 , 1 , 1 , } ;
40
41 . . . / / As i n Fig . 2
42
43 p = f f tx p lan compose (n subp , p l a n s ,
44 FFTX MODE) ;
45
46 / / p lan t o be used w i t h f f t x e x e c u t e ()
47 re turn p ;
48 }

Figure 6. Data access descriptors for computing the pruned 3D FFT using
FFTX. The plan used is the same reported in Fig. 2.

Several algorithms have been developed for fast solutions
of Poisson’s equations. A solution for manycore architec-
tures is an algorithm [21] based on the Method of Local
Corrections (MLC) [22] and designed for a computationally
efficient parallel implementation for 3D gridded data.

The algorithm [21] is a domain-decomposition method
based on computing local convolutions with the freespace
Green’s function on overlapping rectangular domains. The
smooth global coupling among the domains is computed
using a much coarser (and less computationally expensive)
discretization. This is similar to multigrid approaches [23]
[24] [25]. Unlike multigrid, though, the method is non-

iterative. After suitable discretization, a key part of the MLC
method is Hockney’s algorithm, which computes free-space
convolution (infinite domain boundary conditions) quickly
using the FFT. A solution to the free space convolution is
obtained using discrete convolution between ρ and G on a
domain that is at double the size of the support of ρ. Hence,
the input to the convolution has zero-padded entries. We are
only interested in a subset of the output of the convolution
due to coarsening grids in MLC. Thus, both input and
output have a zero-structure which can be pruned to reduce
load/store operations. Additionally, the convolution has real
inputs and outputs, hence a real to complex (R2C) forward
transform and a complex to real (C2R) inverse transform are
used.

The Fourier domain analytic representation of the discrete
Green’s function corresponding to the Laplacian operator is

G̃k “
1

4π||k ´N~u||22
if k ‰ N~u (5)

The numerically computed Green’s function has the same
properties, i.e., it is real and symmetric about the origin in
both space and Fourier domains. Therefore, is enough to
precompute and store only 1{8th (one octant) of the 3D
data. The FFTX API can be used to convolve the input and
the Green’s function using a plan very similar to the one
shown in Fig. 6 with the four additional copies of the Green’s
function octant shown in Fig. 7. The data access descriptors
exposed by these copies make use of both negative and
positive strides to describe the symmetry of the discrete
Green’s function in (5).

V. CURRENT AND FUTURE WORK

In this section, we discuss added features for optimization
for FFTX that could enable the solution of the Maxwell’s
Equations using pseudo-spectral methods.

Consider the Pseudo-Spectral Analytical Time-Domain
(PSATD) method with domain decomposition proposed by
[7], which solves Maxwell’s equations using pseudo-spectral
methods. Domain decomposition is standard for finite-
difference solvers but not for spectral solvers. However, this
combined new paradigm allows favorable parallel scaling of
electromagnetic solvers [26].

In PSATD, Maxwell’s equations in Fourier domain from
step n to step n` 1 on staggered grids are:

Ẽn`1 “ CẼn ` iSk̂ ˆ B̃n ´
S

ck
J̃n`1{2`

i
k̂

k

„ˆ

S

ck∆t
´ 1

˙

ρ̃n`1 `

ˆ

C ´
S

ck∆t

˙

ρ̃n
 (6)

B̃n`1 “ CB̃n ´ iSk̂ ˆ Ẽn ` i
1´ C

ck
k̂ ˆ J̃n`1{2 (7)

where ã is the Fourier transform of the quantity a, E is
electric field, B is magnetic field, J is current density and

1 / / FFTX da ta a c c e s s d e s c r i p t o r s .
2 / / A cc e s s i s t o f o u r o c t a n t s o f a s y m m e t r i c cube .
3 / / Cube s i z e i s Nˆ3 and M = N / 2 .
4 f f t x i o d i m x o c t 0 0 [] = {
5 { M+1 , 0 , 0 , 0 , 1 , 1 , 1 } ,
6 { M+1 , 0 , 0 , 0 , M+1 , 2∗M, 1 } ,
7 { M+1 , 0 , 0 , 0 , (M+1)∗ (M+1) , 4∗M∗M, 1} } ,
8 o c t 0 1 [] = {
9 { Ḿ 1, Ḿ 1, M+1 , 0 , ´1, 1 , 1 } ,

10 { M+1 , 0 , 0 , 0 , M+1 , 2∗M, 1 } ,
11 { M+1 , 0 , 0 , 0 , (M+1)∗ (M+1) , 4∗M∗M, 1} } ,
12 o c t 1 0 [] = {
13 { M+1 , 0 , 0 , 0 , 1 , 1 , 1 } ,
14 { Ḿ 1, Ḿ 1, M+1 , 0 , ´(M+1) , 2∗M, 1 } ,
15 { M+1 , 0 , 0 , 0 , (M+1)∗ (M+1) , 4∗M∗M, 1} } ,
16 o c t 1 1 [] = {
17 { Ḿ 1, Ḿ 1, M+1 , 0 , ´1, 1 , 1 } ,
18 { Ḿ 1, Ḿ 1, M+1 , 0 , ´(M+1) , 2∗M, 1 } ,
19 { M+1 , 0 , 0 , 0 , (M+1)∗ (M+1) , 4∗M∗M, 1} } ;
20
21 . . .
22 f f tx temp complex ha l f G k =
23 f f t x crea te zero temp complex (rk , f d) ;
24 p l a n s [2] = f f tx plan guru copy complex (rk , oc t00 ,
25 G k , half G k , FFTX MODE SUB) ;
26 p l a n s [3] = f f tx plan guru copy complex (rk , oc t01 ,
27 G k , half G k , MY FFTX MODE SUB) ;
28 p l a n s [4] = f f tx plan guru copy complex (rk , oc t10 ,
29 G k , half G k , MY FFTX MODE SUB) ;
30 p l a n s [5] = f f tx plan guru copy complex (rk , oc t11 ,
31 G k , half G k , MY FFTX MODE SUB) ;
32 . . .

Figure 7. The four descriptors used to copy half of the symmetric discrete
Green’s function in (5) when only one of its octants is provided.

ρ is charge density. ~k is the wave vector of length k “
b

k2x ` k
2
y ` k

2
z , and k̂ “ ~k{k. c is speed of light and ∆t

is the time step. S = sin(kc∆t) and C = cos(kc∆t). ∆t
and is the time step and n is the time index. This system
of equations is written as a linear system as follows, where
Ms is referred to as a transformation matrix.

„

Ẽn`1

B̃n`1

“Ms ˆ

»

—

—

—

—

–

Ẽn

B̃n

J̃n`1{2

ρ̃n

ρ̃n`1

fi

ffi

ffi

ffi

ffi

fl

(8)

Since FFTs do not parallelize well, local FFTs of electrical
and magnetic fields are computed instead of a large 3D
global FFT in each domain. The domains include guard
cells, which are exchanged between neighboring domains
in a communication step in order to reconstruct the full
solution. The simulation evolves Maxwell’s equations in
each time step indexed by n, and update of E and B consists
of more operations than just pointwise multiplication. Each
update involves multiplication of the Fourier transforms
with a transformation matrix depending on ~k. Staggered
grids require complex conjugates of ~k in the transformation
matrix. Additionally, a communication step of guard cells

between domains is necessary to reconstruct the global field.
For such problems involving more complex operations on

the Fourier transformed signal, we see the need to develop
the FFTX interface as a more general concept than just for
pointwise operations. Introducing the ability to handle more
general scenarios such as tensor contractions would be of
significant value for optimizing parallel FFTs in exascale
simulations that use PSATD, such as WarpX, an exascale
computing platform for beam plasma simulations [27].

VI. CONCLUSION

FFTs play a prominent role in the design of applications
for emerging exascale systems. These systems exspose un-
precedented high-performance opportunities if applications
can take advantage of their complex multiple levels of paral-
lelism. The goal of FFTX is to provide a framework for users
to maximize performance and productivity when developing
FFT-based applications. In this paper, we have introduced
the FFTX interface and discussed its use for building a
prototypical pruned convolution as an example. We have
also shown how the SPIRAL-based backend of FFTX can
generate code for the whole application by treating the
FFTX plan composition as an input specification. Finally,
we addressed current and future extensions to the FFTX
interface which are primarily driven by requirements of other
important applications of exascale interest, such as Poisson
solvers and pseudo-spectral analytical time-domain in the
context of beam plasma simulations. Ultimately the goal is
the development of SpectralPack, a comprehensive set of
integrated FFT-based appplication template plans unified in
a single high-performance framework.

APPENDIX
MATHEMATICAL DEFINITION OF FFTX FUNCTIONS

In this appendix we provide the mathematical semantics
of the functions used in the application examples presented
in Section IV. Next we fix the notation used in our formu-
lations.

Standard basis We define the standard basis in Rn,

enˆ1
i “ pδijqj“0,...,n´1 P Rn, δij “

#

0, i ‰ j

1, i “ j
. (9)

In (9), δij is the Kronecker delta, while enˆ1
i P Rnˆ1 is the

ith column standard basis vector. Similarly, we denote with
e1ˆni P R1ˆn the respective row vector.

FFTX functions In general, FFTX operations functions
are set up via planner descriptors which are eventually
executed. Formally, for the application of an operator A to
a source vector ~x that yields a destination vector ~y we write

~y
.
“ A~x.

The original data in ~y is untouched if the zero to be assigned
to yi is an entry of a standard basis vector describing the

Table II
PRELIMINARY DEFINITIONS. pă obj ą,ă ofs ą,ă s ąq P

tpin, iofs, isq, pout, oofs, osq, pdata, dofs,dsqu.

r “ rank

h “ howmany rank

~n “ pn0, . . . , nr´1q “ Mappdims, i ÞÑ i.nq

~m “ pm0, . . . ,mh´1q “ Mapphowmany dims, i ÞÑ i.nq

~băobją “ Mappdims, i ÞÑ i. ă ofs ąq

~săobją “ Mappdims, i ÞÑ i. ă s ąq

~bh,ăobją “ Mapphowmany dims, i ÞÑ i. ă ofs ąq

~sh,ăobją “ Mapphowmany dims, i ÞÑ i. ă s ąq

N “

r´1
ź

i“0

ni

Măobją “

h´1
ÿ

i“0

mis
piq
h,ăobją

~s “

˜

r´2
ź

i“0

ni, . . . , n0n1, n0, 1

¸

~x P RN (or CN) “ in

~y P RN (or CN) “ out

~G P RN (or CN) “ data

operation, and not a zero due to input data and computation.
For scalars a and b

pa
.
“ bq :“

#

a, if b “ δik, i ‰ k

b, otherwise

and vector assignment generalizes this idea. Further defini-
tions used in this appendix are listed in Table II.

A. Copy Function
The copy function copies a data cube or sub-cube from

source to destination. Parameters include the input and
output data access descriptors, and the source and target
memory locations.

f f t x p l a n f f t x p l a n g u r u c o p y r e a l (i n t rank ,
f f t x i o d i m x ∗dimsx , f f t x r e a l ∗ in ,
f f t x r e a l ∗out , unsigned f l a g s) ;

An similar function is available for complex data. The
semantics of the copy operation is given as follows. Let
σ “ x~bin, ~sin,~bout, ~souty, then, the copy operator returned
by the planner is defined as

Copyr,~nσ “
ÿ

~jP
r´1
Ś

i“1
Ini

eNˆ1

p~bout ~̀jq¨~sout
¨ e1ˆN
p~bin ~̀jq¨~sin

,

and invoking the executor performs the operation

~y
.
“ Copyr,~nσ ~x.

B. Complex DFT

The complex DFT plan is set up as follows.
f f t x p l a n t f f t x p l a n g u r u d f t (

i n t rank , f f t x i o d i m ∗dims ,
i n t howmany rank , f f t x i o d i m ∗howmany dims ,
f f t x c o m p l e x ∗ in , f f t x c o m p l e x ∗out ,
i n t s ign , unsigned f l a g s) ;

The semantics of the complex DFT operation are given
as follows. Let σ “ x~sin, ~sout, ~sh,in, ~sh,outy. The operator
returned by the planner is defined as

DFTr,h,~n,~mσ “

ÿ

~kP
h´1
Ś

i“1
Imi

˜˜

ÿ

~jP
r´1
Ś

i“1
Ini

eMoutˆ1

p~k‘~jq¨p~sh,out‘~soutq
¨ e1ˆN~j¨~s

¸

DFTn0ˆ...nr´1

˜

ÿ

~jP
r´1
Ś

i“1
Ini

eNˆ1
~j¨~s

¨e1ˆMin

p~k‘~jq¨p~sh,in‘~sinq

¸¸

The multidimensional complex DFT DFTmˆ¨¨¨ˆkˆn can
be defined recursively as

DFTmˆ¨¨¨ˆkˆn Ñ DFTmˆ¨¨¨ˆk b DFTn (10)

DFTn “
“

ωijn
‰

ij
,

where ωn is a primitive nth root of unity. Invoking the
operator will perform the operation

~y
.
“ DFTr,h,~n,~mσ ~x.

C. Real-to-complex DFT

The real-to-complex DFT plan is set up as follows:
f f t x p l a n t f f t x p l a n g u r u d f t r 2 c (

f f t x c o n t e x t t c o n t e x t ,
i n t rank , c o n s t f f t x i o d i m ∗dims ,
i n t howmany rank , f f t x i o d i m ∗howmany dims ,
f f t x r e a l ∗ in , f f t x c o m p l e x ∗out ,
unsigned f l a g s) ;

Let σ “ x~sin, ~sout, ~sh,in, ~sh,outy. The operator returned by
the planner is defined as

RDFTr,h,~n,~mσ “

ÿ

~kP
h´1
Ś

i“1
Imi

˜˜

ÿ

~jP
r´1
Ś

i“1
Ini

eMoutˆ1

p~k‘~jq¨p~sh,out‘~soutq
¨ e1ˆN~j¨~s

¸

RDFTn0ˆ...nr´1

˜

ÿ

~jP
r´1
Ś

i“1
Ini

eNˆ1
~j¨~s

¨e1ˆMin

p~k‘~jq¨p~sh,in‘~sinq

¸¸

Invoking this operator will perform the operation

~y
.
“ RDFTr,h,~n,~mσ ~x.

The multidimensional real DFT RDFTmˆ¨¨¨ˆkˆn can be
defined recursively by decomposing it into a Kronecker

product between the multidimensional DFT in (10) and a
1D RDFT as follows

RDFTmˆ¨¨¨ˆkˆn Ñ DFTmˆ¨¨¨ˆk b RDFTn. (11)

The n-point 1D real DFT in (11) is defined as

RDFTn “

˜

ÿ

~jPIn`2

e
pn`2qˆ1
~j

¨

´

e
1ˆpn`2q
~j

‘ 0pn´2qˆ1
¯

¸

DFTn

˜

ÿ

~jPIn

penˆ1
~j

b e2ˆ1
0 q ¨ e1ˆn~j

¸

DFTn “
“

ωijn
‰

ij
,

where ωn is a primitive nth root of unity and the operator
p¨q maps a complex rˆ c matrix M to a real 2rˆ2c matrix
M replacing every entry u` iv of M with r u ´vv u s.

D. Pointwise Operation

The pointwise operation is set up as shown.

f f t x p l a n f f t x p l a n g u r u p o i n t w i s e c 2 c (
i n t rank , f f t x i o d i m x ∗dims ,
i n t howmany rank , f f t x i o d i m x ∗howmany dims ,
f f t x c o m p l e x ∗ in , f f t x c o m p l e x ∗out ,
f f tw complex ∗ da ta , f f t x c a l l b a c k func ,
unsigned f l a g s) ;

The semantics of the pointwise operation are given as
follows. Let

func “ p : Cˆ CÑ C
σ “ x~sin, ~sout, ~sdata, ~sh,in, ~sh,out, ~sh,datay.

The operator returned by the planner is defined as

Pr,h,~n,~mσ “
ÿ

~kP
h´1
Ś

i“1
Imi

˜

ÿ

~jP
r´1
Ś

i“1
Ini

˜

e1ˆMout

p~k‘p~j`boutqq¨p~sh,out‘~soutq

¸

˝ p ˝

˜

e1ˆMin

p~k‘p~j`binqq¨p~sh,in‘~sinq

ˆ e1ˆMdata

p~k‘p~j`bdataqq¨p~sh,data‘~sdataq

¸¸

Invoking this operator will perform the operation

~y
.
“ Pr,h,~n,~mσ ~x.

ACKNOWLEDGMENT

This research was supported at the Lawrence Berkeley
National Laboratory by the Office of Advanced Scientfc
Computng Research of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. of Computation,
vol. 19, pp. 297–301, 1965.

[2] F. Franchetti and M. Püschel, Encyclopedia of Parallel Com-
puting. Springer, 2011, ch. Fast Fourier Transform.

[3] H. Moulinec and P. Suquet, “A FFT-based numerical method
for computing the mechanical properties of composites from
images of their microstructures,” in IUTAM Symposium on
Microstructure-Property Interactions in Composite Materials,
R. Pyrz, Ed. Springer Netherlands, 1995, pp. 235–246.

[4] D. F. Martin and P. Colella, “A cell-centered adaptive projec-
tion method for the incompressible Euler equations,” Journal
of Computational Physics, vol. 163, no. 2, pp. 271–312, 2000.

[5] A. Canning and D. Raczkowski, “Scaling first-principles
plane-wave codes to thousands of processors,” Computer
Physics Communications, vol. 169, no. 1, pp. 449–453, 2005.

[6] A. Canning, “Scalable parallel 3d ffts for electronic structure
codes,” in High Performance Computing for Computational
Science - VECPAR 2008, J. M. L. M. Palma, P. R. Amestoy,
M. Daydé, M. Mattoso, and J. C. Lopes, Eds., 2008, pp. 280–
286.

[7] J.-L. Vay, I. Haber, and B. B. Godfrey, “A domain decomposi-
tion method for pseudo-spectral electromagnetic simulations
of plasmas,” Journal of Computational Physics, vol. 243, pp.
260–268, 2013.

[8] M. Frigo and S. G. Johnson, “FFTW: An adaptive software
architecture for the FFT,” in Proc. IEEE Int’l Conf. Acoustics,
Speech, and Signal Processing (ICASSP), vol. 3, 1998, pp.
1381–1384, www.fftw.org.

[9] M. Frigo, “A fast Fourier transform compiler,” in Proc. ACM
SIGPLAN conference on Programming Language Design and
Implementation (PLDI), 1999, pp. 169–180.

[10] M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proc. of the IEEE, special issue on ”Program
Generation, Optimization, and Adaptation”, vol. 93, no. 2,
pp. 216–231, 2005.

[11] Intel, “Math kernel library,” software.intel.com/mkl.

[12] IBM, “Engineering and scientific subroutine library,”
www.ibm.com/support/knowledgecenter/en/SSFHY8/essl
welcome.html.

[13] NVIDIA, “cuFFT,” developer.nvidia.com/cufft.

[14] F. Franchetti, T.-M. Low, T. Popovici, R. Veras, D. G. Spamp-
inato, J. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura,
“SPIRAL: Extreme performance portability,” Proceedings of
the IEEE, special issue on “From High Level Specification to
High Performance Code”, vol. 106, no. 11, 2018.

[15] M. Püschel, F. Franchetti, and Y. Voronenko, Encyclopedia
of Parallel Computing. Springer, 2011, ch. Spiral.

[16] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code
generation for DSP transforms,” Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation”, vol. 93, no. 2, pp. 232– 275, 2005.

[17] T.-M. Low and F. Franchetti, “High assurance code generation
for cyber-physical systems,” in IEEE International Sympo-
sium on High Assurance Systems Engineering (HASE), 2017.

[18] F. Franchetti, F. de Mesmay, D. McFarlin, and M. Püschel,
“Operator language: A program generation framework for fast
kernels,” in IFIP Working Conference on Domain Specific
Languages (DSL WC), 2009.

[19] A. J. Chorin, “A numerical method for solving incompressible
viscous flow problems,” Journal of Computational
Physics, vol. 135, no. 2, pp. 118 – 125, 1997.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0021999197957168

[20] R. Hockney and J. Eastwood, Computer Simulation Using
Particles, ser. Advanced book program: Addison-Wesley.
McGraw-Hill, 1981.

[21] P. McCorquodale, P. Colella, G. T. Balls, and S. B. Baden,
“A local corrections algorithm for solving Poisson’s equation
in three dimensions,” vol. 2, 10 2006.

[22] C. R. Anderson, “A method of local corrections for computing
the velocity field due to a distribution of vortex blobs,”
Journal of Computational Physics, vol. 62, no. 1, pp. 111–
123, 1986.

[23] A. Brandt, “Multi-level adaptive solutions to boundary-value
problems,” Mathematics of Computation, vol. 31, no. 138, pp.
333–390, 1977.

[24] P. Basu, A. Venkat, M. Hall, S. Williams, B. Van Straalen,
and L. Oliker, “Compiler generation and autotuning of
communication-avoiding operators for geometric multigrid,”
in 20th Annual International Conference on High Perfor-
mance Computing, HiPC 2013. IEEE Computer Society,
2013, pp. 452–461.

[25] P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen,
N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. Mccorquodale,
D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. V.
Straalen, “Chombo software package for AMR applications
design document,” Tech. Rep., 2003.

[26] H. Vincenti and J. Vay, “Ultrahigh-order Maxwell solver with
extreme scalability for electromagnetic PIC simulations of
plasmas,” Computer Physics Communications, vol. 228, pp.
22–29, 2018.

[27] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote, M. Hogan,
O. Kononenko, R. Lehe, A. Myers, C. Ng, J. Park, R. Ryne,
O. Shapoval, M. Thevenet, and W. Zhang, “Warp-X: A new
exascale computing platform for beam-plasma simulations,”
Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 2018.

