Discrete Fourier Transform on Multicores

Franz Franchetti, MarkusiBchel, Yevgen Voronenko, Srinivas Chellappa, an@ MsF. Moura

Abstract— This paper gives an overview on the technigues DFT (single precision) on Intel Core i7 (4 cores)

needed to implement the discrete Fourier transform (DFT) ngformance [Gflop/s] vs. input size

efficiently on current multicore systems. The focus is on Intel e ——
compatible multicores but we also discuss the IBM Cell, and 35
briefly, graphics processing units (GPUs). The performance 30
optimization is broken down into three key challenges: paral-
lelization, vectorization, and memory hierarchy optimization. In
each case, we use the Kronecker product formalism to formally 20

25
Multiple threads: 3x

derive the necessary algorithmic transformations based on a is Best vector code

few hardware parameters. Further code level optimizations are

discussed. The rigorous nature of this framework enables the 10 » ;TT\;__\
complete automation of the implementation task as shown by g Bestscalarcode e

the program generator Spiral. Finally, we show and analyze DFT Numerical recipes Memory hierarchy: 5x N
benchmarks of the fastest libraries available for the considered R B R A R A
platforms. 16 64 256 1k 4k 16k 64k 256k M

|. INTRODUCTION Fig. 1. Naive DFT implementations based on only minimizing therapons
The evolution of computing platforms is at a historic infleceount underperform considerably on modern multicore CPUs.

tion point: after years of exponential growth, CPU frequenc . o
has stalled due to physical limitations. However, the taeal Whose structure matches the architectural constrainteseth

floating point peak performance, a critical measure for tHy this multicore platform. Equally notable, the source eod
processing abilities of a platform, continues to increaste for the fgst implementations were not written by a human but
pace predicted by Moore’s Law. The reason is an increasedptomatically produced by a tool called Spiral 3], [4], [6ht
parallelism in the form of multiple processor cores and sectWe developed and whose framework underlies this paper.
processing abilities [1]. We present a tutorial-style overview of the optimizations
The consequences for signal processing software are dgeded to achieve good performance on Intel multicore plat-
matic: it means the end of free speed-up for legacy softwd@ms (top line in Fig. 1), the IBM Cell, and briefly touch
and a dramatically increased difficulty of writing high pmef On GPUs. Starting from a standard recursive fast Fourier
mance code, since the programmer now has to use multiggnsform (FFT), we use the Kronecker product formalism to
threads, vector instruction sets, and tune the code to time-mélerive the necessary structural, or algorithmic optinadret
ory hierarchy. Unfortunately, this process is platforneaific: Necessary code level optimizations are also discussed. In
performance does not port easily. Failure to apply these oghis way, we address all three key problems identified in
mizations by hand can result in dramatic performance lossed™ig- 1: multiple cores, vector instruction sets, and the mgm
shown in Fig. 1. The figure shows the performance (in Gflopféerarchy.
= gigafloating point operations per second; higher is better Finally, we show and analyze performance benchmarks of
for four implementations of the discrete Fourier transforithe fastest libraries for Intel Core, IBM Cell, and GPUs.
(DFT), arguably the most important signal processing fianct Specifically, we show benchmarks for FFTW [6], [7], [8],
and focus of this paper. All implementations use fast Fouriétel's IPP, Spiral-generated libraries, FFTC [9], and][fdr
transform algorithms (FFTs) with roughly the same number gte GPU. Other libraries and related work will be introduced
operations. Yet, the performance difference between tise béroughout the paper.
and worst is a factor of 12 to 35. The bottom line shows
the implementation from Numerical Recipes [2] based on a I
standard radix-2 iterative FFT. The next line is one of thetbe
scalar (standard C code) implementations and is 5 timesrfast There are two fundamentally different ways of representing
since it is tuned to the memory hierarchy. The next one gailigear transforms such as the DFT: as matrix-vector praduct
up to another factor of 3 by using SSE vector instructionsr using summations. Correspondingly, fast algorithms are
Finally, the fastest code uses up to four processor cores dgagresented either with a matrix formalism as in [11], [12]
speeds up the code by another factor of 3 for larger siz@s.as nested summations as in most signal processing books.
The performance drop for very large sizes is due to inewataldh this section, we introduce the matrix formalism and use it
cache misses once the working set cannot be held in the targesexpress various classical FFTs. Later in the paper, we use
cache. this formalism as a tool for structural manipulation of FFTs
The main reasons for the achieved speed-up are algorithniiz:derive variants that can be efficiently mapped to current
all top three lines are based on nonstandard FFT variamsiticore systems. The formal nature of the approach makes
Thi } 4 by NSE throudh ds 0325687 computer generation of FFT libraries possible as we have
DARII:’SA\A(IODrOIVé?asmstul\rl’g(():rlt-lelOSgOOQ), tthéngROag\;:LtswgllNFo%maZ% demonstrated with the tool Spiral [13] that we developed and
by Intel Corp. and Mercury Computer Systems, Inc. briefly discuss later.

The authors are with the Department of Electrical and Compktegi- We focus on the DFT but note that the framework extends
neering, Carnegie Mellon University, Pittsburgh. E-mdifiranzf, yvoronen, .
schellap, pueschel, modr@ece.cmu.edu. Ph: 412-268-6341; fax: 412-2680 a.large CIaSS_Of linear transforms [3]. .
3890. Discrete Fourier transform. The DFT ofn input samples

. FRAMEWORK

- O o
(AeB)" = ATeB' ®)
:g: Imn = Im @Iy, (6)
A®B = (A®In)(I,® B) %)
: 22 A®(BC) = (A®B)(ARKO(0), ()]
A®B = LM™(B®A)L™™, (9)
= (Lmm™ = e (10)
@y =1 @DFT2)z () y=(DFT2@L)z Lyt = (L @ Im) Ik ® L"), (11)
kmn _ mn kn
Fig. 2. Dataflow (right to left) of a parallel and its “dual” ¢®r construct. Lim = (@ Lp") (" @ Im), (12)
: ' . . TABLE |
2oy, Tn—1 1S defmed In summation form as FORMULA IDENTITIES TO MANIPULATE FFT ALGORITHMS. A ISn X n,
ke AND B AND C AREm x m. AT IS THE TRANSPOSE OFA.
yh= Y wim, 0<k<n,)
0st<n DFT,®I; T¥ L,@DFT, L3¢
with w,, = exp(—27j/n). Stacking ther, andy;, into vectors L.
x andy yields the equivalent form of a matrix-vector product: DFT;s = .
y=DFT, 2, DFT, = [w}locki<n- @) :
We dropz andy and simply think of the matribxDFT,, as — iy

the transform, implicitly assuming that it is multiplied to
Fast algorithms are now expressed as factorizatiod3Rf,,
using the following formalism.

Matrix formalism. We denote withl,, the n x n identity
matrix, and thebutterfly matrixwith

DFT, = [1 _]. 3)

The Kronecker producbf matricesA and B is defined as

AQ B = [awB], for A = [akyd.
Fig. 3. Cooley-Tukey FFT (15) fol6 = 4 x 4 as matrix formula and

It replaces every entryi; , of A by the matrixay ,B. Most as (complex) data-flow graph (from right to left). Some lines &old to
important are the cases wherk or B is the identity. As SmPhasize the strided access.
examples, we show in Fig. 2 the structure and dataflow of
the “dual” constructd, ® DFTs andDFT; ®1,. The former
is obviously parallel, the latter has vector structure:aih de
viewed as a singldFT, operating on vectors of length 4
instead of scalars. This will be crucial later. " .

The stride permutatiormatrix ™" permutes the elements * La°: Readz at stride 4.

m

of the input vector agn+;j — jm+i, 0 <i <m, 0< j < n. . 141? DFTy: Apply 4 DFT4's on consecuétive chunks.

If the vectorz is viewed as am x m matrix, stored in row- * Zi°: Scale by the diagonal elements Bj°.

major order, therL™" performs a transposition of this matrix. * PFTa /42 Apply 4 DET,’s at stride 4.

Further, if P is a permutation (matrix), thed? = P~1AP Recursive FFT variants. Looking at Table I, it becomes

is the conjugationof A with P. Note thaty = Az implies clear that many variants of (15) can be derived. For example,

Py = APz, i.e., Ais performed on vectors permuted with ~Simple transposition using tha)FTI = DFT,, yields the
There are various identities connecting these constridis [decimation in frequency (DIF) Cooley-Tukey FFT

as shown in Table I. For example, (9) shows how to translate n n

the duals in Fig. 2 into each otF;ler.(: DF Tk = Ly, (I © DF Ty) T, (DF T @1). (16)

The Kronecker product naturally arises in 2D and 3D DFT3he Four Step algorithm [15], [16], [11]
which respectively can be written as
DFTy, = (DFT, ®1,)T,, L (DFT,, ®I;) (17)

Here, T} is a diagonal matrix containing theviddle factors
Fig. 3 shows the special ca$é = 4 x 4. Using this algorithm
on an input vector: means (reading Fig. 3 from left to right):

DETmxn = DFTy, ® DFT,, (13) was originally developed for vector computers. It produttes
DFTyxmxn = DFT,@DFT, @DFT,. (14) |ongest possible unit stride vector operations at the cbst o

Recursive DIT FFT. The matrix formalism can be usedtranSpOS'tlon' The Six Step algorithm [17], [11]

to express FFTs as factorizations of the mabikT,, in (2). DF Ty, = LY (I, @ DETR) L™ T" (I, @ DFT,,,) LY. (18)
As an example, the recursive general-radix decimatiomie ti o o)
(DIT) Cooley-Tukey FFT forn = km is was originally developed for distributed memory machiries.

produces fully local computation at the cost of three global
DFTy,, = (DFTy ®I,,)T, (I, @ DFET,,)L}. (15) transpositions (all-to-all data exchanges). Both (17) €i8)

are derived from (15) using (9)—(10). The required matri)atrix formula

Matlab pseudo code

transposition can be blocked using (11)—(12) for more effici y = (AnBp)z
data movement.

For a 2D DFT, applying (7) to (13) yields the row-column k=1
algorithm v= <1;10 Ai) &

DFTpup = (DFT,, ®1,)(I, @ DFT,). (19)

The 2D vector radix algorithm [18] is derived with (6)—(10):
Im®L;"®Is(

y=Im ® An)z

DFTnxrs = (DFT’I’TLXT ®Ins)

(Inr © DFT,,)

Higher-dimensional versions are derived similarly, ané thy:Lmnm
associativity of® gives rise to more variants. m

T:lnn ® Tsrs)
L,®L"®I, (LG ® L?S). y= Dpx

t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)
y =X

for (i=0; i<k; i++)

{x =y; y=Al, x:}
for (i=0; i<m i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);
for (i=0; i<n; i++)

yli:nii+mn-n] = A(x[i:n:i+mn-n]);
for (i=0; i<n; i++)

y[i]l = Dn[i]*x[i];
for (i=0; i<m i++)

for (j=0; j<n; j++)

yli+mej:Llii+mj] = x[nxi+j:l:nxi+j];

Iterative FFT Algorithms. A second class (historically
earlier) of FFT algorithms based on (15) are therative
FFT algorithms obtained by recursively expanding (15) and
again using Table I. The simplest aradix-r forms (usually
r = 2,4,8), which require an FFT size of = r* (more
complicated mixed-radix radix variants always exist).

m

= (Lpm @ L)

for (i=0; i<m i++)
for (j=0; j<n; j++)
yLk*(i+mej): 1 kx(i +mej) +k-1] =
X[kx(nxi+j):1:kx(n*i+)+k-1];
for (i=0; i<n; i++)
t = Dm[i:n:i+mn-n]*x[i:n:i+mn-n];
y[i:n:ii+mn-n] = A(t);

The decimation in timériple-loop FFT [19], [11], -
y = (Im ® Ap)Lmng 107 (1500 T<m i+%)

k—1 y[i*n:l:i*n+n-1] = A(x[i:mi+n*mni);
k k
DFT,. = Ry [[D} (IL-i-s ® DFT, ®1,:), (20) ABLE
=0

FROM MATRIX FORMULAS TO CODE. THE SUBSCRIPT OFA, B SPECIFIES

is the simplest iterative algorithmR”" is the radixr digit THE (SQUARE) MATRIX SIZE. X[b: S: €] DENOTES THE SUBVECTOR OF

reversal permutatlon anﬂ)rk Contalns the thddIe factors In STARTING AT b, ENDING AT €, EXTRACTED AT STRIDES. THE DIAGONAL
1

the ith stage. A radix-2 version is implemented by Numer- ELEMENTS OFD ARE STORED IN AN ARRAY WITH THE SAME NAME.

ical Recipes [2]. A variant of (20) is th€easeFFT [20],

[11], which has constant geometry, i.e., the control flow ishow optimized translations. The last two show how a diag-
independent of the stage; however, it also requires the digha| scaling is always fused with subsequent loops and how
reversal permutation. It was originally developed for fata permutations are (almost) always done as readdressingin th

computers, and its regular structure makes it a good Cho&ﬁbsequent loop. The shown translationyof (L™ ® I;,)x

for field-programmable gate arrays (FPGAs) or ASICS. yepjaces every scalar in the shown translation:noi Lmng
The StockhanFFT [21], [11],

by a vector of lengthk, similar as in Fig. 2(b).
k-1 e e Further, different types of implementations are possible,
DFT,: = H (DFT, @I«)D} (LT " ®1I.), (21) briefly discussed next.
i=0 Single-size kernelsFor small input sizes< 32 or 64,
is self-sorting i.e., it does not have a digit reversal permutanatrix formulas are often implemented as fully unrolled €od
tion. It was originally developed for vector computers. blocks. In this case array scalarization and, to a lessengxt
DFT variants and other FFTs. In practice, several variantsalgebraic optimizations and scheduling are used to achieve
of the DFT in (2) are needed including forward/inversédest performance and can be completely automated [7], [23],
interleaved/split complex format, for complex/real inplatta, [3], [24]. For example, eDFTs kernel is implemented in a
inplace/out-of-placey(= = or not), and others [22]. Fortu- few tens of lines of code.
nately, most of these variants are close to the standard BFT i Single-size loop codéf the input size is known in advance,
(2), so fast code for the latter can be adapted. An exceptidrfixed formula or data flow can be chosen and implemented
is the DFT for real input data, which has its own class afsing nested loops arising from tensor products and iterati
FFTs (see [4] for an overview using the above formalismproducts. As discussed before, scaling and readdressing is
This paper focuses on the standard 1D interleaved (alteghatmerged into kernels for high performance. These implemen-
real and imaginary parts) complex DFT in (2). tations can be generated automatically using Spiral [2]], [
DFT algorithms fundamentally different from (15) includg25]. One such single-size implementation can require ug to
prime-factor ¢ is a product of coprime factors), Rader is few hundreds of lines of code.
prime), and Bluestein or Winograd (any FFTs and can also General-size loop codeOnly iterative algorithms lend
be expressed in the above formalism [11]. In practice thedwemselves to general-size loop code implementation. Agai
are mostly used for small sizes 32, which then serve as readdressing is folded into the computational kernel. An
building blocks for large composite sizes via (15). example is the Numerical Recipes code [2], which implements
From matrix formulas to implementations. Table 1l (20) forr = 2 as a triple loop in about one page of C code.
shows how to translate matrix formulas into basic sequientia General-size recursive cod&@ranslating formulas into re-
loop code. However, strictly applying the upper part of theursive code is complicated, but is at the heart of sevegdl-hi
table will lead to low performance. The last three entriggerformance portable general-size FFT libraries [8], [251],

Vector registers

[28]. A tutorial for a recursive radix-4 FFT is given in [29], o [TT2TaTE STITETE] -
leading to about two pages of C code. Extension to vector ﬁ ﬁ ~————

and multicore platforms considerably increases the cane si

for example, FFTW contains more than 200,000 lines of code.

The implementation of such libraries was also automatethusi I
Spiral [28], [4]. bus

Vector operation
add v2, v0, vl

Fig. 4. Shared cache in a multicore CPU and SIMD vector extessi
I1l. M APPINGFFTS TOMULTICORE CPUs

Historically, the Kronecker product formalism was used tB2ckets of sizg.. On shared memory multicores this implies
develop FFTs for parallel target platforms such as smallesc (hat the code is free of false sharing (two cores accessing
and massive multiprocessors, and vector computers [36], [1]ifferent elements in the same cache line).

[11]. We now discuss how to extend this approach to state-Matrix formulas solely built from

of-the-art multicore CPUs. The new hardware charactesisti I.2A D Pal
that need to be captured are: 1) multiple cores commungatin 7 ’ " "
through shared caches or explicit messages, 2) SIMD sh@ith A a m x n matrix andy | m,n can be implemented
vector instructions, and 3) the memory hierarchy and itgficiently as parallel code; we call theparallel constructs
transfer restrictions, such as caches and DMA-based stiganNamely, I, ® A is load balanced and embarrassingly parallel
memory. We will address each of these features in thresee Fig. 2(a)), i.e., it does not require any communication
steps. First, we identify relevant hardware parametersoi®8 The same holds for scaling b,,. Finally, the communication
we identify a set of matrix formulas that can be mappeghttern P, ® I,, transmits entire packets of size between
efficiently for these parameters. Third, we derive a var@nt cores. Note that products of parallel constructs are again
the recursive Cooley-Tukey FFT (15) that is a member of thigarallel constructs.

set. In each case, we also briefly discuss the mapping tolactuaviulticore Cooley-Tukey FFT. We now state a multicore

code including further relevant code level optimizatiofts. FFT built exclusively from parallel constructs, derivedngs
Section VI, we then instantiate the concepts and algoritttmsTaple | [5]:

an Intel Core and the Cell BE and briefly discuss GPUs and

FPGAs. . o . DFTu, = (I, ® (DFT,, @1,,),)) (4 /) 91i) o
Choosing recursive algorithms is not a requirement. It is i/

possible to start from iterative algorithms or combine one(Zp ® (In/, ® DFTn) L) (LE" @ Ly jpy) @). (22)

or two steps of recursion with an iterative algorithm and . .

achieve reasonable performance (as demonstrated by ksev@iR!ementation of (22) on a cache-based system relies on the

vendor libraries). However, many current high-perfornmnc,caChe coherency protocol to transmit cache lines of lepgth

libraries for cache-based machines implement the reeursREfWeen cores and requires a global barrier. Implementatio
FFT algorithms [6], [3], [4], [27], [26], [31] discussed ker ©ON & scratchpad based system requires explicit sending and
receiving of the data packets, and depending on the commu-

_ _ nication interface additional synchronization may be el
A. Parallelism: Multiple Cores Equation (22) can be used as outermost recursion to enable

The multicore CPUs we target may have shared cach®glticore parallelization. The smaller DFTs are then exigah
(Fig. 4), private caches, or scratchpads (local storesh wigsing the short vector Cooley-Tukey FFT (23) or the vector
data being transferred in packets. Cache coherent artthitsc recursion (29) shown later in this section.
transfer data implicitly between private and shared caeses Historically, the Pease and the Six Step FFT (18) were start-
required. Data transfer between scratchpads has to be endgg points for parallel iterative or recursive implemerdas,
explicitly by the programmer. In each case, to obtain beBut due to changed trade-offs these algorithms are no longer
performance it is crucial to ensure that the whole data cdnté good choice in many cases.
in a transfer (e.g., cache line or DMA packet) is used by the Mapping to C code. OpenMP [32] is a good choice for
receiver (spatial locality) and that the number of trarsfisr parallel code if it is well supported by the target platfosm’
minimized (temporal locality). compiler. OpenMP allows the programmer to declare certain

Machine model. We assume that the packet size is ®ops to be parallel, and to specify variables as shared or
multiple of an atomic packet size gf complex numbers. private. It enables the programming of sophisticated feral
For instance, on a cache-based memory hierarchy, a cashware without needing to deal with lower-level threagdin
coherency event, a cache miss, or an eviction always tramsndietails. As example, the formuld, ® DFT, in Fig. 2(a)
a whole cache line (e.g., 64 bytes translates jnte 8 for is translated into the OpenMP program snippet below. Note
complex single-precision). In scratchpad based systekes Ithat only a C#pragma is inserted to instruct the compiler
the Cell, DMA packets need to be of sufficient size foio parallelize thef or loop. If OpenMP is turned off, these
performance; to yield reasonable performance, a Cell DMpragmas are ignored and the program becomes sequential.
transfer between SPEs should be at least 128 byies (6 doubl e x[8], y[8]:
for complex single-precision numbers) and a multiple of 16. #pragma onp parallel for

We consider CPUs with cores. Well designed parallel code for (int i=0; i<d; i++)
. y[2*i] xX[2%i] + x[2*i+1];
is load balanced (all cores have the same amount of work), * Vio.i41] = x[2+i] - x[2%i+1]:
with minimal data transmission between cores, performed in }

(P permutation,D,, diagonal)

Because of the regular structure of FFTs only a few momoperations by the corresponding vector operations, and all
issues have to be addressed for efficient OpenMP parstalar variables by vector variables. Second, we assunte tha
lelization. For correctness, the sharing and privatizettd y = D,z can be implemented efficiently for | n. This is
variables with the OpenMBhar ed and pri vat e clauses a reasonable assumption: for instance, the SSE4.2 instuct
has to be done properly to avoid race conditions and otheat implemented by the Core i7 contains instructions for the
problems. For performance, scheduling hints can be prdvidefficient mapping of complex multiplications. Thirg= L*’
(e.g.,schedul e(stati c)). In addition, if only a subset of can always be implemented with a small number of vector
the available cores is to be used, affinity can be set to chodsstructions [34].

the subset. For example, two threads operating on the sam&hort vector Cooley-Tukey FFT.We show a short vector
data should be physically close, i.e., share a high levehef tFFT algorithm that is built from vectorizable constructe-d
memory hierarchy. rived from (15) using Table I. It requires only a small number

On some target platforms no OpenMP compiler may lbsf in-register shuffles [35]:
available, in which case one must use threading libraries
like the portable Posix threads (pthreads) [33] library se u DFT,,, = ((DFT,, ®In/l,)®L,)T,T”(Im/,,®(1n/,,®L§2)
operating system threading interfaces to build the reduire n mn/v
parallel loops and barriers. While this approach can yield a (n/v ®1,)(DF T, ®I”>)(Lm/l{ ®L’)’ (23)
slight performance advantage, it requires understanditigeo This FFT is composable with memory hierarchy optimized
target architecture, its memory consistency model, antieeag=FTs. Namely, inserting (23) into the vector recursion (29)
coherency protocols. shown later yields again a vector construct.

On the Cell processor the programmer needs t0 manage\ somewhat more complicate@al (using a real represen-
and synchronize threads on the PPE and the SPES, @bn of matrices) short vector FFT is derived in [36], [37]
perform data movements via DMA transfers. Due to the Cell's Tragitional vector algorithms like the Four Step algo-
unconventional architecture, libraries for it must be dddfdo rithm (17) or the Stockham algorithm (21) were designed for
take advantage of its features. While there have been sofngjitional vector computers with much longer vectors. Due
programming paradigms ported to the Cell (including somg the expensive permutations, they are not a good choice for
function offloading interfaces), for the class of prograns d ghort-vector SIMD architectures.

the overhead of such interfaces. use SIMD extensions is through intrinsic function integfac
provided by most high-performance compilers. For instance
B. SIMD Vectorization the Intel C++ compiler, Microsoft's VisualStudio C compile

Most multicore CPUs include vector instruction sets. SIMIBM’s XL C compiler, and the GNU C compiler provide such
vector extensions add vector registers (2-way double oay-w@n interface for the supported SIMD extensions.
float on the Core i7 and the Cell), and much longer vectors will The programmer uses a data type and function abstraction
be available in the near future (e.g., 16-way single prenisiof the SIMD extensions to implement C code. The compiler
on Intel's upcoming Larrabee GPU, and 4-way double and Bnderstands the data types and special functions and maps
way single precision in AVX on the next generation of Intelhe C program to the respective instructions. In this sgenar
multicore CPUs). Vector instructions then operate on thete programmer must select the appropriate instructiods an
registers in parallel, providing high potential speed-ap4- Make sure machine restrictions like data alignment are met.
way vector addition is shown in Fig. 4. However, the programmer does not have to directly use assem-

Machine model. To obtain best performance on vectoPly and thus is spared from register allocation and insibact
extensions, data should be loaded and stored with vecggheduling. For example, the formuld'T, @Iy in Fig. 2(b)
memory operations that transfer complete, naturally alignis implemented by the following C program snippet using
vectors. Unaligned and subvector accesses are expendive imrinsics for the Intel C++ compiler._nl 28 is a built-in data
operations on the vector registers should be vector opesati type to abstract XMM vector registers, andm add_ps()
(Vector addition, subtraction, and mu|tip|ication)_ Dabor- abstracts the SSE instructi@nﬂdps through a function call:
ganization within registers (shuffles) are needed for FRfis b nm128 x[2], y[2];
should be minimized. y[0] = _mmadd_ps(x[0], x[1]);

For this paper, we restrict ourselves to what we cathplex Y[= _mmsub_ps(x[0]. x[1]);
vectorization We denote the machine vector length with
meaningr complex numbers are packed into a vector register)
of length2v; e.g., for 4-way float SSEy = 2. C. Memory Hierarchy

All formulas built solely from Our target multicores CPUs have a memory hierarchy with
multiple cores sharing the off-chip bandwidth. Machineghwi
memory hierarchies present algorithm designers with two

can be implemented efficiently with vector instructions; wehallenges:
call them vector constructs. Moreover, Af and B are vector « Temporal locality:Faster memory levels are smaller, and

A®1I,, D, (complex diagonal) and Ll”,2

constructs, themdB and I,, ® A are vector constructs. the working set must be blocked to fit into that level to
First, A® I, is naturally vectorized (e.g., Fig. 2(b)): vector minimize data transfers.
code fory = (A ® I,)z can be obtained from scalar « Spatial locality: Data transfer between memory hierarchy

code implementingy = Az by simply replacing all scalar levels happens in packets. This implies that transferred

packets should be fully used to avoid wasting memomxpresses the tiling and again the permutaﬂéﬁ;%“ ®1, is
bandwidth. implemented using explicit copy operations.

Machine model. A memory hierarchy can have multiple Memory hierarchy optimizations. To obtain FFT algo-
levels. For a given level, we call the capacily if it can rithms suitable for the memory hierarchy (i.e., the aldomt
hold the working set for the computation gf = Az for is a memory construct), we start with (15):
an N x N matrix A. This implies that the input vectar, mn mn
the output vectory, and all necessary temporary arrays and DETon = (DF Ty ®I1n) T3 (I @ DFTR) L™ (27)
constants fit into that cache level. For instance, if we @®tsi DFT,, @I, is a memory construct fom < « or m < ca
double-precision, one (complex) value is 16 bytesAlfs a if buffering is applied. This explains why relatively small
DFT, N is the cache size divided by 64 (assuming a factqalues ofm (the radix) work well in practicel,, ® DFT,,
of 4 space overhead). As before, we assume that datgjsisa memory construct fon < N. If n > N, recursive
transferred between the current level and the next lowel leypplication of (27) will eventually yield» < N, producing
in the memory hierarchy in packets pf complex numbers. another memory constru®FT,, ®1,, at each recursion step
Moreover, if it is a set-associative cache, it can helihes of along the way. This suggests that the largest possible radix
1 elements in the same set, and hence thererareN/(au) is a good choice in each step. We show a two-level recursion

sets. for further discussion:
We call a formulaA a memory construcif during the

computation ofy = Az, elements ofr are loaded once and DFTy,,,, = (DFT}, ®1I,,,) T
never stored, and elements gfare never loaded and stored (Ik ® (DFTy, ®1,,)T™" (I,y @ DET)Lmn)LE’mn. (28)

once. Obvious memory constructs are
. In (27), the only non-memory construct is of&'™ at every
An (n < N), P® 1, (P apermutation) D,. (24) recursion level withmn > N. Using buﬁerinﬁt each step
The first has a sufficiently small working set. The secondgoainhcurs too much overhead. Buffering the rightma& in (28)
or stores complete packets. The last, diagonal scalinggspointly is not possible. One solution is to give up on spatial
no problems. locality: all rightmostL’s are fused and merged into the first
One problematic construct in (15) has the fadp ®1,,. As loop as explained before. A better solution is to translate i
Table 1l shows, the loop body accesses data at strigielding into @ memory construct, which is indeed possible and done,
poor spatial locality unless: < a, which is very restrictive. €.9., in FFTW [6]. Namely, the entire second line in (28) is
However, at the expense of some overhead, this condition deanslated into therector recursion
be relaxed ton < N/u = o« throughbuffering It is done
by first tiling the loop by and then copying the working set (/s @ (DF Ty, @I,) ")
for the innermost loop into contiguous memory. The tileddoo (Lzm ®1,) (I'm ® (I ® DFT,)Lfn) (L™ @ L) (29)
corresponds to the formula
mn/u with | n, k. This is repeated until the problemati¢;, ®
A @ Iy = (I ® (A @ 1)) Fosn 100 (25) DFTn)i’,j" is small enough to be a memory consﬁuct. The

Buffering means that in the above formula the conjugatidRrmula manipulation leading to (29) manifests itself asplo

is implemented using actual copy operations (in contrast $8litting and loop exchange in the equivalent code [6].
translating them into re-indexing) based on the third4asty ~ Historically, the iterative triple loop algorithm (20) was

in Table II. The resulting pseudo code snippet is shown helowsed to compute FFTs on a single CPU. However, once the
On the Cell the copy operations are translated into pM@ata set does not fit in cache, cache thrashing occurs and the

instructions instead. performgnce drops drastically. S
doubl e x[mn]. y[mnl: Mapping to C code. The structural optimization ensures
for (j=0;j<n/muj++) that the algorithm has good cache locality. When mapping to
/1 allocate buffers code, the following additional issues have to be addressed:
;’?“E'ogy“i[mg“]bhf]‘{g?“"”]? 1) how to create efficient basic blocks, 2) how to exploit
for (k=0:k<m k++) degrees of freedom, and 3) how to handle constants (twiddle
ulkemu: L: ks (mu+l) -1] = . factors).
y Com’;tlt;”‘A‘“(‘;;”ba%{c;g‘é*g%gr;;gtg data On modern deeply pipelined superscalar processors, the
for (i=0:i<mu;i++) recursive FFT has to be terminated with a basic block that is
v[li:mui+memu-mu] = A(u[i:mu:i+memu-m]); sufficiently large but does not cause instruction cache emiss
%rc?ﬁioqﬁiﬁl Eii;(Experiments show that a DFT of a size betweén and
y[j*mutksn: 1+ (mu+l) - 1+ksn] = 32v (v is the SIMD vector length) is a good choice. The
v[kxmu: 1: k= (mu+1) - 1] ; basic block is obtained by unrolling an FFT with minimal
} operations count and performing scalar replacement tolenab

The other problematic construct in (15) has the faiy @ €fficient register allocation and scheduling. Additionedad
A,,)L7™ and can be handled similarly: the loop is again tile@&ins may be achievable by C code scheduling, reduction of

but only the load-side has a strided access and needs totlieneeded constants, and a few other techniques. Thisgsroce
buffered. Formally, was automated in [7], [23]. The downside is considerably

increased code size. For example, FFTW [6] requires several

(Im®An) L = (Im/u®LZ“(An®I#))(LZ%“(EQI#) (26) megabytes of C code to implement 1D FFTs based on (15).

The FFTs (22), (23), (25), (26), (29) contain degrees a@bde (implemented in C with CUDA library calls) and CUDA
freedom (mainly the respective radix, if and where to buffekernels; these kernels are programmed in a special C dialect
and when to terminate with a basic block) that can be searchBte kernels are run in a data-parallel SPMD fashion on a
over for further platform adaptation. Dynamic programmingrid; a sufficiently large grid and homogeneous kernel code
has been proven efficient in most cases [6], [3]. allows for high throughput performance. It is paramount to

Finally, the twiddle constants are usually precomputed estructure the data access pattern such that kernels thgtidre
cept for possibly very large sizes for which the FFT becomeighbours operate on contiguous data (spatial locality),
memory bound. In this case computation on the fly can yielhable coalesced memory access. CUDA kernels are compiled
considerable improvements. The decision is again handledtb a platform-independent byte code that the CUDA driver

search in FFTW and Spiral-generated libraries [4]. translates into actual GPU code on its first invocation,ointr
ducing a significant overhead.
IV. MAPPINGFFTs ToOGPUs AND FPGAS OpenCL [44] is an emerging open standard for parallel

rogramming of heterogeneous systems; one of its targets is

On early machines, large programs with complex lo . L .
structures were expensive, and memory access was refati PU computing and partitioning of computation across CPUs
gd GPUs.

cheap. Multiple passes through the entire data set were aee
ceptable while recursive functions were hard to implement a
expensive. Thus, iterative FFT algorithms like (20)—(2Erev

the best choice and were developed first. Current machines V- COMPUTERGENERATION OFLIBRARIES

with streaming memory (GPUs) or small memories (DSP The K din thi iselv d ib

processors or embedded processors) operate in a simdar tr FT € rzmewg: presente I'” this paper CO”?f'.S?V Ie;:” es

off spot. On FPGAs, the simple loop structure of iterative’ 'S &nd enanies structural optimization to efficiently ehat
?égonthms to multicore platforms based on a few crucial

algorithms makes them the preferred choice. For exampfes
the regular Pease FFT and variants of the iterative FFT rameters. The f(_)rmal nature of the a_pproach has another
ajor advantage: it serves as a blueprint for the computer

good choices for latency and throughput optimized FPGR X . : .
implementations, respectively [20], [11], [38]. In theltating generation of transform libraries. We have demonstrated th

we very briefly discuss GPUs and provide references for mg éth.SpiraI, a system fchat generates high-performancariﬂam
details. or I|r]ear transfprms m_cludlng thg DFT. Given only Fextlkoo
Since the advent of programmable pixel shaders, geneg(lgonthms (as in Section i), _Sp|ral generates mu_ltltkils_ah
purpose programming on GPUs became an increasingly viaﬁ?&tor'ze.d source code. In $p|ral, the matrix formalismsed .
option. Earlier GPUs like Nvidia's G79 series were a fir S domam—speqﬁc _declaranve language caIIed_SPL, ontwhic
step towards that goal. However, with the Nvidia G80 Seri%:uctural optimizations are performed by rewriting sysse
|

GPUs have become truly programmable. While they are stb ekso?jrce coqlle level optimi;ationfs are perf(_)rrr|1ed by Spiral
optimized for graphics-like workloads, mapping non-giiaph ackend compiler (an extension of [23]). Spiral can gegerat

applications with similar structure can result in astoirigh code for transforms of fixed input size [3], [5], [37], [45] or

performance including for the DFT. The caveat is that tHgEneral input size transform libraries [28], [4] that aneitar
performance is often only achievable for data resident i GP° FFTW' . o o
memory; data transfer between GPU and host CPU is still veryMajor advantages of library generation include the efficien
expensive and may nullify any speed-up obtained through thgndling of the implementation complexity and the ability
GPU’s high raw performance (we discuss this issue to greaf@rquickly port to new platforms. The complexity is due to
detail in Section VI-C). Intel's upcoming Larrabee platfor the comblngtlon of many non-trivial transformations |rd1h_g _
may improve this situation. t_hose in this paper, the n_eed for further code level optimiza

Machine Model. State-of-the-art GPUs like the Nvidia Ggotions (such as the unrolling of small kernels as was briefly
series applies ideas from symmetrically multithreaded. (e. discussed), the degrees of freedom in these optimizatsors (
Tera MTA) and vector computers (e.g., Cray T90) to achie@®$ the choice of radix or the use or not use of buffering),
high streaming performance [39]. In addition, minimal coht the need for speC|.aI|zat|on (e.g., for small code sizes,WFT
flow, small computational kernels, and spatial locality are Provides many variants), the number of transforms needed (t
requirement to achieve high performance. DFT variants o_llscussed in Section Il and other transforarg),

GPU FFT algorithms. The above analysis suggests thée set of available algorithms.

Stockham FFT algorithm (21), originally developed for wect ~Problems with porting include different programming mod-
computers. Indeed, most FFT implementations developed f§f (vector instructions, explicit DMA, OpenMP) and the
GPUs [40], [41], [42], [10] are based on (21), and the raditifficulty of maintaining performance, both exacerbatedHuy

is chosen to match the GPU's hardware parameters. fast evolution of platforms.

Mapping to code.In early GPU computing the computation A library generator greatly alleviates these problems, aad
had to be mapped to pixel shaders using graphics languagbewn in the next section, often without losses and somstime
like OpenGL and DirectX. The language Cg was a firstven gains in performance. For example, an increasing numbe
step towards more general-purpose shaders that could abéansform routines in Intel’s IPP (starting with 6.0) @yen-
programmed in a C-like language. erated by Spiral, the main reason being superior performanc

With the G80 series, Nvidia introduced CUDA [43] which
makes it possible to run more general compute-intensiver, perform all necessary optimizations, Spiral uses in amdi&n exten-
algorithms on GPUs. The program has to be broken into hagin called=-SPL [25], [28] not described here due to lack of space.

VI. BENCHMARKS ONMULTICORE CPUs first speed-up through threading occurs already for a wgrkin

In this section we show FET benchmarks of the fasteSt that fits into the L1 cache of one core. Subsequently, the
libraries on multicores that are state-of-the-art at tneetiof Performance ramps up as four cores are used on L1, L2, or L3

this writing. The focus is on an Intel Core quadcore systech af2che resident data yielding about 3x speedup over 1 thread.
the IBM Cell BE with 9 cores, but we also include results fof '€ Performance peaks at 15 Gflop/s (double precision) and

the Nvidia GPU GTX280 with 240 cores. For the Core and thisp GflOP/s (single precision) for vectorized code runningtin
Cell we consider Spiral generated libraries, which implame? cores. The drop for single precision and input size 16K may

the exact techniques discussed and the similar FFTV? B&2. be an artifact of imperfect search. For sizes outside theesha
the Core we also show Intel's IPP 6.0 [22] and for the Cel3 cache, the performance drops as the computation becomes
FFTC [9]. For the GPU, we extracted the results from [10].MeMOry bound. At this point buffering, vector recursiongdan
The performance for input sizex is computed as on-the-fly twiddle computation becor_ne crucial. .
5nlog,(n)/t, wheret is the runtime in seconds. This is a slight Since the FFTs used by the Spiral-generated library are
overestimate since the true flop count is closetidog,(n) &lready adapted as explained in this paper, even a random

and depends on the exact algorithm and recursion strat&gypice of recursion will yield reasonable performance timit
chosen. X say). The detailed shape of the best recursion for a given

DFT size on a given multicore CPU is difficult to predict.
) However, we made the following observations.

A. Intel Multicore The multicore Cooley-Tukey FFT (22) is used as top-

Platform. We consider a 2.66 GHz Intel Core i7 quadcortevel algorithm sizes that are large enough to benefit from
processor (Nehalem microarchitecture, 45 nm process) wijthrallelization. Typicallymm = p in (22) leads to a yields good
SSE 4.2 instruction set. It has three levels of cache and 2p&formance. Further, the short vector Cooley-Tukey FR) (2
GB/s memory bandwidth (using all three on-chip memorgrovides perfect SIMD vectorization. On the Coreri7= v
controllers). Each core supports hyperthreading but for pris a good choice.
grams with high arithmetic density (like FFTs), SMT does For cache-resident sizes, the standard Cooley-Tukey FFT
not provide any benefit, so in Spiral we use no more than(45) is a good choice with small enough such th&FT; can
threads using OpenMP. be implemented fully unrolled, and the machine has enough

The Core i7 implements SSE 4.2, providing 2-way doublegisters to support the computation. In practige, < k <
precision and 4-way single precision floating point vectd@2v (CPU-dependent) is a good choice. Once the working set
support. Moreover, it supports complex arithmetic operati no longer fits into the last cache level (or into the local stan
packing one complex double-precision number or 2 corthe Cell) the involved trade-offs become tricky. In additim
plex single-precision numbers into vector registers. Whild5), the vector recursion (29) and buffering (25)—(26)dmee
unaligned memory access is supported, the best performafastest. On the Core i7 for large enoub¥ Ty, a typical
is achieved with 16-byte aligned vector loads and stores. out-of-cache decomposition applies the vector recursk®) (

The Core i7 implements the shared memory paradigm. Eagfth 8 < k,m < 32 until the working set fits into the last
core has a private 64 kB L1 cache and 256 kB L2. The 8 M&che level. In additionDFT}, ®I,,, and DFT,, ®I, are
L3 cache is shared among cores. All caches have 64 bjigfered and the twiddle factors computed on the fly. This
cache lines (4 complex double precision numbers or 8 complesincides with our abstract analysis in Section IlI-C.
single-precision numbers).

The theoretical peak performance is 85.12 Gflop/s for single
and 42.56 Gflop/s for double precision. B. Cell BE

Results. Figs. 5(a) and (b) show results for out-of-place piatiorm. We consider a 3.2 GHz Cell BE with 9 cores,
double-precision and single-precision 2-power FFTs. FFTWe|yding one traditional PowerPC core and 8 SIMD vector
and the Spiral generated library [4] are compiled with thegres (called synergistic processing elements, or SPEsh E
Intel C++ compiler 11.0 and flags *-O3 -xS"; IPP is provide&spg jncludes its own fast on-chip 256 KB local memory
as binary. The measurements are with “warm” cache. (local store) that is designed to be explicitly managed tgy th

_For the Spiral generated I|1brar|es, the working set for tnpy,ogrammer. This means inter-core and main memory-local
sizen is 6n real numbers od 5 real numbers if the twiddle siore transfers must be performed via DMA; the achieved
factors are computed on the fly. Figs. 5(a) and (b) indicagga pandwidth increases with DMA packet size. The Cell
maximal cache resident sizes. For”example, in Fig. 5(a), f¢ludes a set of 4-way single precision SIMD instructions
FFT is L3 cache resident up to=2"". for the SPEs, accessible via C intrinsics. The vectorimatio

Overall in Figs. 5(a) and (b), Spiral is about equal anfowever, is very similar to Intel's SSE. The peak perforneanc
often faster than the hand-written libraries. For smalbg;z of the Cell is 204.8 Gflop/s single precision (SPEs only) and
the performance reaches up to 10 Gflop/s (double preciston)i9, 4 Gflop/s double precision.

14 Gflop/s (single precision); In double precision a sligiiid ey ts.Fig. 5(c) shows the (latency) performance of Spiral
occurs for the first size (256) that is not completely unmblle generated code (separate functions for every size [45]ifn th
This is due to the occurring index expressions that can gﬁse), FFTC [9], and FFTW 3.2, each using the interleaved-
fully precomputed and inlined only if the code is unrolledheT complex data format. Spiral-generated code is compiled wit

, . _ spu-gcc (flags: “-O2"), the other data is extracted from the

2FFTW implements the recursive Cooley-Tukey FFT, bufferingctar
recursion, and SIMD vectorization, using algorithms simitart not equal respective papers. In f_idd't'on we include 2#é-sized DFT
to (22) and (23). from [46] and the2'6-sized DFT from [47] (both use split-

(a) Complex DFT (Intel Core i7, 2.66 GHz, 4 cores, double precision) (b) Complex DFT (Intel Core i7, 2.66 GHz, 4 cores, single precision) (c) Complex DFT (STI Cell BE, 3.2 GHz, 8 cores, single precision)
Performance [Gflop/s] vs. input size Performance [Gflop/s] vs. input size Performance [Gflop/s] vs. input size
18 40 60

.
1 core| 4 cores shared 1core| 4cores shared [47]

[46] &

Spiral generated

Spiral generated
BRI FFTW

Intel IPP 6.0

Intel IPP 6.0 Spiral generated

(1 thread)

Spiral generated
(1 thread)

Fig. 5. DFT performance on the 2.66 GHz Intel Core i7 (a), (lj t#tre 3.2 GHz Cell BE (c). Higher is better.

complex data format). The latter has been estimated toaehie Complex DFT (Nvidia GTX280, 1.3 Gz, 240 cores, single precision)
erformance [Gflop/s] vs. input size
a throughput of 116 Gflop/s. 400
Spiral-generated code to date is limited to sizes for which 350 Lo memory
the working set fits into the union of all local stores; the sam 300 bandwicth bound
seems to hold for FFTC. Both perform better than FFTW for 250 roughout performance
these sizes. The excellent performance of both [47] and [46] 200 (from GPU memory)
is due to a highly optimized®-sized kernel. 150
All loads and stores from main memory, and all inter- 100
core communication (permutations in (22)) are performed © bandwidih bound
explicitly using DMA instructions. We use the Cell’s inter- . {rom o memorg)
core messaging mechanisms for synchronization barriers. 2 8 32 128 S12 2k 8k 32 128k 512k 2M &M

The Cell allows initiated DMA instructions to proceed irFig. 6. DFT performance on a Nvidia GTX 280 GPU. Higher is bette
the background along with active computation. Although not
currently used in our code in Fig. 5(c), large out-of-chipTDFand throughput2** /n DFTs of sizen are performed in batch
sizes can use a multibuffering technique based on (25) m9de), both with GPU memory resident data.
(partially) hide memory costs. Data can be stored and loadedl hroughput performance plays well to the strength of the
for the previous and next iterations in separate bufferdevhGPU and ramps up almost parallel to the memory bandwidth
computation progresses for the current iteration. Theieikpl bound untiln = 512; then cache limitations cause the perfor-
move operations in (25) would become DMA instructions. Mance to drop to about 100 Gflop/s. We note that it is possible

For parallel code, in contrast to the Core i7, the best, (ot specified in [10]) that the batch mode compudsI',, 1
in (22) found are both close tg/mn, since this maximizes the (interleaved DFTs) rather thah& DFT,,. Not surprisingly,
packet size.. The remaining choices found are similar to théatency performance in contrast can amortize memory Igtenc
Core i7; inside (22) and (23), a (15) with ~ 128 is chosen. ©nly for large sizes. -

Other results include [48], who achieve about 22 Gflop/s It Seems attractive to transparently utilize the GPU as
on a single SPE for DFTs of input size¥’ and2!? resident accelerator for batched single precision DFTs in CPU com-
in the SPE’s local store. [49] implement 2D and 3D paralléutations. The problem is the PCle bandwidth between host

SPE-resident FFT kernels achieving up to 30 Gflop/s. ~ memory and GPU memory, which yields the lower gray line
as performance bound, and realistically probably half at.th

Consequently, only very large sizes would benefit. However,

C. GPU if the entire application can be implemented on the GPU, the

Platform. We consider the Nvidia 280GTX with 240 coregUII performance can be harness_ed, and can yield for the DFT
grouped into 30 multiprocessors, 1 GB of on-GPU mai p to an e|ghtfol'd performance improvement compared to a
memory and a GPU memory bandwidth of 140 GB/s. Th PU and up to fivefold compared to the cell.
shader clock is 1.3 GHz, and each core can perform 1 fused
multiply-add and a multiply operation per cycle, leading t&- FPGA
936 Gflop/s peak performance. The connection between CPUNVhile not directly in the scope of this paper, we mention
memory and GPU uses PCle 2.0, which for 16 lanes hasoa comparison that the FFT in [38], [13] achieves up to 40
bandwidth of 16 GB/s (8 in each direction). The theoretic@flop/s throughput performance on a Virtex-4 (V4-FX140) for
(single precision) peak performance is 936 Gflop/s. a DFTq56 in single precision floating point using all logic

Results. The runtime results in Fig. 6 are taken from [10]available (more data is not readily available). On Virtex-6
and appear to be the fastest at the time of this writingvice the performance is possible using twice the resources
The memory configuration limits the achievable floatingapoi This performance requires the data to be on-chip; the off-
performance for FFTs to 43.7bg, n Gflop/s out of GPU chip bandwidth is typically about 10 GB/s in each direction.
memory (obtained from 140 GB/s GPU memory bandwidthlNote that usually fixed point is used on FPGAs and that most
and to 5log, n Gflop/s out of host memory (obtained fromapplications leave only a small part of the available logic f
16 GB/s PCle bandwidth). These bounds are included as gfyTs. In summary, the main appeal of FPGAs for DFTs are
lines in Fig 6. The plot shows latency (one DFT is performed) saving power rather than as mere accelerator.

For commercial state-of-the-art FFTs on FPGAs see, e.g§]

[50], [51].

The end of CPU frequency scaling and advent of multicot#s]
systems has two major consequences for compute inten-
sive signal processing applications. First, it marks the efg)
of free speed-up for legacy software. Second, the software
development skill required to achieve optimal performance
is dramatically increased. As we have shown for the DF{I'Q,0
minimizing operations count alone does not yield optimal @y

VII. CONCLUSION

even close-to-optimal performance. Instead, the stractir

algorithms becomes crucial and has to be matched to A&
target architecture. Specifically, the check list for higrfpr-

mance is efficient parallelization, vectorization, and roem

hierarchy optimization. The necessary transformations ar
likely to stay out of reach for compilers since they requir@“]
domain knowledge and the ability to assess the many availabl
choices. To handle the implementation complexity we belie\25]

it is important to develop rigorous approaches that forpeali

algorithmic optimizations by connecting the algorithmustr

ture with architecture parameters. We have presented suc
framework for the DFT and used it to give an overview on
FFTs and optimizations for current multicores. Furtherwas
demonstrated with Spiral, the rigorous nature of the fraorkw
enables automation: the computer generation of DFT liesari

that often achieve excellent performance compared to thEF
hand-written counterparts.

(1]
(2]

(3]

(4]
(5]
(6]
(7]
(8]
(9]

[20]

(11]
[12]

[13]
[14]

[15]

REFERENCES

G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of matire
architectures,”IEEE Signal processing Magazin2009.

W. H. Press, B. P. Flannery, Teukolsky S. A., and Vettgrlw. T.,
Numerical Recipes in C: The Art of Scientific Computir@ambridge
University Press, 2nd edition, 1992.

M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.

Singer, J. Xiong, F. Franchetti, A. @&, Y. Voronenko, K. Chen, [32]

R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation f@&PD

transforms,”Proceedings of the IEER/ol. 93, no. 2, pp. 232-275, 2005, [33]
[34]

special issue on “Program Generation, Optimization, andpfeteon”.

Y. Voronenko, F. de Mesmay, and MiiBchel, “Computer generation of
general size linear transform libraries,” Rroc. Code Generation and
Optimization (CGO) 2009, pp. 102-113.

F. Franchetti, Y. Voronenko, and M.uBchel, “FFT program generation
for shared memory: SMP and multicore,”moc. Supercomputing (SC)
2006.

M. Frigo and S. G. Johnson,
FFTW3,” Proceedings of the IEEE/ol. 93, no. 2, pp. 216-231, 2005,
special issue on “Program Generation, Optimization, andpfeten”.

M. Frigo, “A fast Fourier transform compiler,” ifProc. Programming
Language Design and Implementation (PLD1p99.

“FFTW 3.2,” www. f ftw. org.

David A. Bader and Virat Agarwal, “FFTC: Fastest Fourteansform
for the IBM Cell Broadband Engine,” iRroc. Intl. Conference on High
Performance Computing (HiPCR007, pp. 172-184.

Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Bur Smith,
and John Manferdelli, “High performance discrete fouriemsforms
on graphics processors,” Proc. Supercomputing (SC3008, pp. 1-12.
C. Van Loan,Computational Framework of the Fast Fourier Transform
SIAM, 1992.

R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
Transforms and ConvolutigrSpringer, 2nd edition, 1997.

“Spiral web site,"www. spi ral . net.

J. Johnson, R. W. Johnson, D. Rodriguez, and R. TolimfArmethod-
ology for designing, modifying, and implementing Fourier sfmm

algorithms on various architecturesZEE Trans. Circuits and Systems [42]

vol. 9, pp. 449-500, 1990.

A. Norton and A. J. Silberger, “Parallelization and feemance analysis
of the Cooley-Tukey FFT algorithm for shared-memory architess,”
IEEE Trans. Computvol. 36, no. 5, pp. 581-591, 1987.

(17]

(23]

(29]

(30]

(31]

36
“The design and implementatibn (g]

(37]
(38]

(39]

(40]

(41]

[43]
[44] “OpenCL,” ww. khr onos. or g/ opencl /.

10

M. Hegland, “Block algorithms for FFTs on vector and phala

computer,” inParallel Computing: Trends and Applicationpp. 129—

136. 1994.

D. H. Bailey, “FFTs in external or hierarchical memory’ Supercom-
puting vol. 4, pp. 23-35, 1990.

D. B. Harris, J. H. McClellan, D. S. K. Chan, and H. W. Sehsler,

“Vector radix fast fourier transform,” ifProc. Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSR)/7, pp. 548-551.

J. W. Cooley and J. W. Tukey, “An algorithm for the mach@aadculation

of complex Fourier seriesMath. of Computationvol. 19, pp. 297-301,
1965.

] M. C. Pease, “An adaptation of the fast Fourier transfdor parallel

processing,”Journal of the ACMvol. 15, no. 2, April 1968.

Paul N. Schwarztrauber, “Multiprocessor FFT$arallel Computing
vol. 5, pp. 197-210, 1987.

Website, “Intel integrated performance primitives (ip®.0,”
software.intel.conm en-us/intel-ipp.

J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPLnguage and
compiler for DSP algorithms,” ifProc. Programming Language Design
and Implementation (PLDJ)2001, pp. 298-308.

I. W. Selesnick and C. S. Burrus, “Automatic generatibpime length
FFT programs,” IEEE Trans. Signal Processingol. 44, pp. 14-24,
1996.

F. Franchetti, Y. Voronenko, and M.UBchel, “Loop merging for
signal transforms,” inProc. Programming Language Design and
Implementation (PLDI)2005, pp. 315-326.

26] D. Mirkovi¢ and S. L. Johnsson, “Automatic performance tuning in the
a UHFFT library,” in Proc. Int'l Conf. Computational Science (ICCS)

2001, vol. 2073 olLNCS pp. 71-80, Springer.

D. Takahashi, “An implementation of parallel 1-D FFT u$iSSE3

instructions on dual-core processors,”Rroc. Int'l Workshop on State-
of-the-Art in Scientific and Parallel Computing (PARAD06, pp. 1178—
1187.

] Y. Voronenko, Library Generation for Linear Transform&h.D. thesis,

Electrical and Computer Engineering, Carnegie Mellon Uit 2008.
Srinivas Chellappa, Franz Franchetti, and Markiisdpel, “How to
write fast numerical code: A small introduction,” irecture Notes in
Computer Science2008, vol. 5235, pp. 196-259, Springer.

J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. TalimieA
methodology for designing, modifying, and implementing Fautiians-
form algorithms on various architectures,”IEEE Trans. Circuits,
Systems, and Signal Processingl. 9, no. 4, pp. 449-500, 1990.

A. Ali, L. Johnsson, and J. Subhlok, “Scheduling FFT cartagion on
SMP and multicore systems,” Froc. Int’l Conf. Supercomputing (ICS)
2007.

OpenMP,OpenMP C and C++ Application Pragram Interface, Version
1.0, 1998, ww. opennp. or g.

Bill Gallmeister, POSIX.4 O'Reilly, 1994.

Franz Franchetti and Markusugchel, “Generating SIMD vectorized
permutations,” inProc. Int'l Conf. Compiler Construction (CCR008,
vol. 4959 ofLecture Notes in Computer Scien@p. 116-131, Springer.
F. Franchetti and M &schel, “Short vector code generation for the
discrete Fourier transform,” iRroc. IEEE Int'l Parallel and Distributed
Processing Symposium (IPDR2P03, pp. 58-67.

F. Franchetti and M #&schel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” iroc. |IEEE Int'| Parallel and
Distributed Processing Symposium (IPDP3002, pp. 20-26.

F. Franchetti, Y. Voronenko, and M.UBchel, “A rewriting system for
the vectorization of signal transforms,” iRroc. High Performance
Computing for Computational Science (VECPAR)06.

P. A. Milder, F. Franchetti, J. C. Hoe, and Misthel, “Formal datapath
representation and manipulation for implementing DSP transfg in
Proc. Design Automation Conference (DAQPO8, pp. 385-390.

Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumd&ang Su
Gatlin, Nick Mitchell, John Feo, and Brian Koblenz, “Multirocessor
performance on the Tera MTA,” iRroc. Supercomputing (SC1998,
pp. 1-8.

Kenneth Moreland and Edward Angel, “The FFT on a GPU,” in
Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics hardwar
2003, pp. 112-119.

Naga K. Govindaraju and Dinesh Manocha, “Cache-efficreumerical
algorithms using graphics hardwareParallel Comput, vol. 33, no.
10-11, pp. 663-684, 2007.

Akira Nukada, Yasuhiko Ogata, Toshio Endo, and Satdgatsuoka,
“Bandwidth intensive 3-d FFT kernel for GPUs using CUDA,” in
Proc. Supercomputing (SC2008, pp. 1-11.

“Nvidia CUDA,” www. nvi di a. cont cuda.

[45]

[46]

[47]

[48]

[49]

[50]
[51]

S. Chellappa, F. Franchetti, and MarkugsEhel, “Computer generation
of fast Fourier transforms for the Cell Broadband Engine,Pic. Int'l
Conf. Supercomputing (ICS2009.

Alex C. Chow, Gordon C. Fossum, and Daniel A. Brokenshifé
programming example: Large FFT on the Cell Broadband EngireghT
Rep., IBM, May 2005.

Jon Greene and Robert Cooper, “A parallel 64K complex BRgbrithm
for the IBM/Sony/Toshiba Cell Broadband Engine processorGlobal
Signal Processing Expo (GSRx@005.

L. Cico, R. Cooper, and J. Greene, “Performance and prograbil-
ity of the IBM/Sony/Toshiba Cell Broadband Engine Processan
Proc. (EDGE) Workshop2006.

Paolo Bientinesi, Nikos Pitsianis, and Xiaobai Sun,ulltdimensional
array operations for signal processing algorithms,Proc. Int'l Work-
shop on State-of-the-Art in Scientific and Parallel Commuit{(PARA)
2008.

“4DSP,” wwv. 4dsp. conf fft.htm

“Dillon FFT,” www. di | | oneng. cont fft i p.

11

