
1

Discrete Fourier Transform on Multicores
Franz Franchetti, Markus Püschel, Yevgen Voronenko, Srinivas Chellappa, and José M. F. Moura

Abstract— This paper gives an overview on the techniques
needed to implement the discrete Fourier transform (DFT)
efficiently on current multicore systems. The focus is on Intel
compatible multicores but we also discuss the IBM Cell, and
briefly, graphics processing units (GPUs). The performance
optimization is broken down into three key challenges: paral-
lelization, vectorization, and memory hierarchy optimization. In
each case, we use the Kronecker product formalism to formally
derive the necessary algorithmic transformations based on a
few hardware parameters. Further code level optimizations are
discussed. The rigorous nature of this framework enables the
complete automation of the implementation task as shown by
the program generator Spiral. Finally, we show and analyze DFT
benchmarks of the fastest libraries available for the considered
platforms.

I. I NTRODUCTION

The evolution of computing platforms is at a historic inflec-
tion point: after years of exponential growth, CPU frequency
has stalled due to physical limitations. However, the theoretical
floating point peak performance, a critical measure for the
processing abilities of a platform, continues to increase at the
pace predicted by Moore’s Law. The reason is an increase in
parallelism in the form of multiple processor cores and vector
processing abilities [1].

The consequences for signal processing software are dra-
matic: it means the end of free speed-up for legacy software
and a dramatically increased difficulty of writing high perfor-
mance code, since the programmer now has to use multiple
threads, vector instruction sets, and tune the code to the mem-
ory hierarchy. Unfortunately, this process is platform-specific:
performance does not port easily. Failure to apply these opti-
mizations by hand can result in dramatic performance lossesas
shown in Fig. 1. The figure shows the performance (in Gflop/s
= gigafloating point operations per second; higher is better)
for four implementations of the discrete Fourier transform
(DFT), arguably the most important signal processing function
and focus of this paper. All implementations use fast Fourier
transform algorithms (FFTs) with roughly the same number of
operations. Yet, the performance difference between the best
and worst is a factor of 12 to 35. The bottom line shows
the implementation from Numerical Recipes [2] based on a
standard radix-2 iterative FFT. The next line is one of the best
scalar (standard C code) implementations and is 5 times faster,
since it is tuned to the memory hierarchy. The next one gains
up to another factor of 3 by using SSE vector instructions.
Finally, the fastest code uses up to four processor cores and
speeds up the code by another factor of 3 for larger sizes.
The performance drop for very large sizes is due to inevitable
cache misses once the working set cannot be held in the largest
cache.

The main reasons for the achieved speed-up are algorithmic:
all top three lines are based on nonstandard FFT variants

This work was supported by NSF through awards 0325687, 0702386, by
DARPA (DOI grant NBCH1050009), the ARO grant W911NF0710416,and
by Intel Corp. and Mercury Computer Systems, Inc.

The authors are with the Department of Electrical and ComputerEngi-
neering, Carnegie Mellon University, Pittsburgh. E-mail:{franzf, yvoronen,
schellap, pueschel, moura}@ece.cmu.edu. Ph: 412-268-6341; fax: 412-268-
3890.

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores) 

Performance [Gflop/s] vs. input size

Best vector and parallel code

Best vector code

Best scalar code

Numerical recipes

Mul�ple threads: 3x

Vector instruc�ons: 3x

Memory hierarchy: 5x

Fig. 1. Naive DFT implementations based on only minimizing the operations
count underperform considerably on modern multicore CPUs.

whose structure matches the architectural constraints imposed
by this multicore platform. Equally notable, the source code
for the fast implementations were not written by a human but
automatically produced by a tool called Spiral [3], [4], [5]that
we developed and whose framework underlies this paper.

We present a tutorial-style overview of the optimizations
needed to achieve good performance on Intel multicore plat-
forms (top line in Fig. 1), the IBM Cell, and briefly touch
on GPUs. Starting from a standard recursive fast Fourier
transform (FFT), we use the Kronecker product formalism to
derive the necessary structural, or algorithmic optimizations.
Necessary code level optimizations are also discussed. In
this way, we address all three key problems identified in
Fig. 1: multiple cores, vector instruction sets, and the memory
hierarchy.

Finally, we show and analyze performance benchmarks of
the fastest libraries for Intel Core, IBM Cell, and GPUs.
Specifically, we show benchmarks for FFTW [6], [7], [8],
Intel’s IPP, Spiral-generated libraries, FFTC [9], and [10] for
the GPU. Other libraries and related work will be introduced
throughout the paper.

II. FRAMEWORK

There are two fundamentally different ways of representing
linear transforms such as the DFT: as matrix-vector products
or using summations. Correspondingly, fast algorithms are
represented either with a matrix formalism as in [11], [12]
or as nested summations as in most signal processing books.
In this section, we introduce the matrix formalism and use it
to express various classical FFTs. Later in the paper, we use
this formalism as a tool for structural manipulation of FFTs
to derive variants that can be efficiently mapped to current
multicore systems. The formal nature of the approach makes
computer generation of FFT libraries possible as we have
demonstrated with the tool Spiral [13] that we developed and
briefly discuss later.

We focus on the DFT but note that the framework extends
to a large class of linear transforms [3].

Discrete Fourier transform. The DFT ofn input samples



2

xy

(a) y = (I4 ⊗ DFT2)x

xy

(b) y = (DFT2 ⊗I4)x

Fig. 2. Dataflow (right to left) of a parallel and its “dual” vector construct.

x0, . . . , xn−1 is defined in summation form as

yk =
∑

0≤ℓ<n

ωkℓ
n xℓ, 0 ≤ k < n, (1)

with ωn = exp(−2πj/n). Stacking thexℓ andyk into vectors
x andy yields the equivalent form of a matrix-vector product:

y = DFTn x, DFTn = [ωkℓ
n ]0≤k,ℓ<n. (2)

We dropx and y and simply think of the matrixDFTn as
the transform, implicitly assuming that it is multiplied tox.
Fast algorithms are now expressed as factorizations ofDFTn

using the following formalism.
Matrix formalism. We denote withIn the n × n identity

matrix, and thebutterfly matrixwith

DFT2 =
[

1 1
1 −1

]

. (3)

The Kronecker productof matricesA andB is defined as

A ⊗ B = [ak,ℓB], for A = [ak,ℓ].

It replaces every entryak,ℓ of A by the matrixak,ℓB. Most
important are the cases whereA or B is the identity. As
examples, we show in Fig. 2 the structure and dataflow of
the “dual” constructsI4 ⊗DFT2 andDFT2 ⊗I4. The former
is obviously parallel, the latter has vector structure: it can be
viewed as a singleDFT2 operating on vectors of length 4
instead of scalars. This will be crucial later.

The stride permutationmatrix Lmn
m permutes the elements

of the input vector asin+j 7→ jm+i, 0 ≤ i < m, 0 ≤ j < n.
If the vectorx is viewed as ann × m matrix, stored in row-
major order, thenLmn

m performs a transposition of this matrix.
Further, if P is a permutation (matrix), thenAP = P−1AP
is the conjugationof A with P . Note thaty = AP x implies
Py = APx, i.e.,A is performed on vectors permuted withP .

There are various identities connecting these constructs [14]
as shown in Table I. For example, (9) shows how to translate
the duals in Fig. 2 into each other.

The Kronecker product naturally arises in 2D and 3D DFTs,
which respectively can be written as

DFTm×n = DFTm ⊗DFTn, (13)

DFTk×m×n = DFTk ⊗DFTm ⊗DFTn . (14)

Recursive DIT FFT. The matrix formalism can be used
to express FFTs as factorizations of the matrixDFTn in (2).
As an example, the recursive general-radix decimation in time
(DIT) Cooley-Tukey FFT forn = km is

DFTkm = (DFTk ⊗Im)Tn
m(Ik ⊗ DFTm)Ln

k . (15)

(BC)⊤ = C⊤B⊤ (4)

(A ⊗ B)⊤ = A⊤ ⊗ B⊤ (5)

Imn = Im ⊗ In, (6)

A ⊗ B = (A ⊗ Im)(In ⊗ B) (7)

A ⊗ (BC) = (A ⊗ B)(A ⊗ C), (8)

A ⊗ B = Lmn

n (B ⊗ A)Lmn

m , (9)
`

Lmn

m

´

−1
= Lmn

n (10)

Lkmn

n = (Lkn

n ⊗ Im)(Ik ⊗ Lmn

n ), (11)

Lkmn

km
= (Ik ⊗ Lmn

m )(Lkn

k
⊗ Im), (12)

TABLE I

FORMULA IDENTITIES TO MANIPULATE FFT ALGORITHMS. A IS n × n,

AND B AND C ARE m × m. A⊤ IS THE TRANSPOSE OFA.

DFT4 ⊗I4 T 16

4
I4⊗DFT4 L16

4

DFT16 =

xy

Fig. 3. Cooley-Tukey FFT (15) for16 = 4 × 4 as matrix formula and
as (complex) data-flow graph (from right to left). Some lines are bold to
emphasize the strided access.

Here,Tn
m is a diagonal matrix containing thetwiddle factors.

Fig. 3 shows the special case16 = 4×4. Using this algorithm
on an input vectorx means (reading Fig. 3 from left to right):

• L16
4 : Readx at stride 4.

• I4 ⊗ DFT4: Apply 4 DFT4’s on consecutive chunks.
• T 16

4 : Scale by the diagonal elements ofT 16
4 .

• DFT4 ⊗I4: Apply 4 DFT4’s at stride 4.
Recursive FFT variants. Looking at Table I, it becomes

clear that many variants of (15) can be derived. For example,
simple transposition using thatDFT⊤

n = DFTn yields the
decimation in frequency (DIF) Cooley-Tukey FFT

DFTkm = Ln
m(Ik ⊗ DFTm)Tn

m(DFTk ⊗Im). (16)

The Four Step algorithm [15], [16], [11]

DFTkm = (DFTk ⊗Im)Tn
mLn

k (DFTm ⊗Ik) (17)

was originally developed for vector computers. It producesthe
longest possible unit stride vector operations at the cost of a
transposition. The Six Step algorithm [17], [11]

DFTkm = Ln
k (Im ⊗ DFTk)Ln

mTn
m(Ik ⊗ DFTm)Ln

k . (18)

was originally developed for distributed memory machines.It
produces fully local computation at the cost of three global
transpositions (all-to-all data exchanges). Both (17) and(18)



3

are derived from (15) using (9)–(10). The required matrix
transposition can be blocked using (11)–(12) for more efficient
data movement.

For a 2D DFT, applying (7) to (13) yields the row-column
algorithm

DFTm×n = (DFTm ⊗In)(Im ⊗ DFTn). (19)

The 2D vector radix algorithm [18] is derived with (6)–(10):

DFTmn×rs =
(

DFTm×r ⊗Ins

)Im⊗Lrn
r ⊗Is

(

Tmn
n ⊗ T rs

s

)

(

Imr ⊗ DFTn×s

)Im⊗Lrn
r ⊗Is

(

Lmn
m ⊗ Lrs

r

)

.

Higher-dimensional versions are derived similarly, and the
associativity of⊗ gives rise to more variants.

Iterative FFT Algorithms. A second class (historically
earlier) of FFT algorithms based on (15) are theiterative
FFT algorithms, obtained by recursively expanding (15) and
again using Table I. The simplest areradix-r forms (usually
r = 2, 4, 8), which require an FFT size ofn = rk (more
complicated mixed-radix radix variants always exist).

The decimation in timetriple-loop FFT [19], [11],

DFTrk = Rrk

r

k−1
∏

i=0

Drk

i

(

Irk−i−1 ⊗ DFTr ⊗Iri

)

, (20)

is the simplest iterative algorithm.Rrk

r is the radix-r digit
reversal permutation andDrk

i contains the twiddle factors in
the ith stage. A radix-2 version is implemented by Numer-
ical Recipes [2]. A variant of (20) is thePeaseFFT [20],
[11], which has constant geometry, i.e., the control flow is
independent of the stage; however, it also requires the digit
reversal permutation. It was originally developed for parallel
computers, and its regular structure makes it a good choice
for field-programmable gate arrays (FPGAs) or ASICs.

The StockhamFFT [21], [11],

DFTrk =

k−1
∏

i=0

(

DFTr ⊗Irk−1

)

Drk

i

(

Lrk−i

r ⊗ Iri

)

, (21)

is self-sorting, i.e., it does not have a digit reversal permuta-
tion. It was originally developed for vector computers.

DFT variants and other FFTs. In practice, several variants
of the DFT in (2) are needed including forward/inverse,
interleaved/split complex format, for complex/real inputdata,
inplace/out-of-place (y = x or not), and others [22]. Fortu-
nately, most of these variants are close to the standard DFT in
(2), so fast code for the latter can be adapted. An exception
is the DFT for real input data, which has its own class of
FFTs (see [4] for an overview using the above formalism).
This paper focuses on the standard 1D interleaved (alternating
real and imaginary parts) complex DFT in (2).

DFT algorithms fundamentally different from (15) include
prime-factor (n is a product of coprime factors), Rader (n is
prime), and Bluestein or Winograd (anyn) FFTs and can also
be expressed in the above formalism [11]. In practice these
are mostly used for small sizes< 32, which then serve as
building blocks for large composite sizes via (15).

From matrix formulas to implementations. Table II
shows how to translate matrix formulas into basic sequential
loop code. However, strictly applying the upper part of the
table will lead to low performance. The last three entries

Matrix formula Matlab pseudo code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)

y =

 

k−1
Q

i=0

Ai

!

x
y = x;
for (i=0; i<k; i++)
{x = y; y = A(i, x);}

y = (Im ⊗ An)x
for (i=0; i<m; i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0; i<n; i++)

y[i:n:i+m*n-n] = A(x[i:n:i+m*n-n]);

y = Dnx
for (i=0; i<n; i++)

y[i] = Dn[i]*x[i];

y = Lmn
m x

for (i=0; i<m; i++)
for (j=0; j<n; j++)

y[i+m*j:1:i+m*j] = x[n*i+j:1:n*i+j];

y = (Lmn
m ⊗ Ik)x

for (i=0; i<m; i++)
for (j=0; j<n; j++)

y[k*(i+m*j):1:k*(i+m*j)+k-1] =
x[k*(n*i+j):1:k*(n*i+j)+k-1];

y = (Am ⊗ In)Dmnx
for (i=0; i<n; i++)

t = Dmn[i:n:i+m*n-n]*x[i:n:i+m*n-n];
y[i:n:i+m*n-n] = A(t);

y = (Im ⊗ An)Lmn
m x

for (i=0; i<m; i++)
y[i*n:1:i*n+n-1] = A(x[i:m:i+n*m-m]);

TABLE II

FROM MATRIX FORMULAS TO CODE. THE SUBSCRIPT OFA, B SPECIFIES

THE (SQUARE) MATRIX SIZE . x[b:s:e] DENOTES THE SUBVECTOR OFx

STARTING AT b, ENDING AT e, EXTRACTED AT STRIDEs. THE DIAGONAL

ELEMENTS OFD ARE STORED IN AN ARRAY WITH THE SAME NAME.

show optimized translations. The last two show how a diag-
onal scaling is always fused with subsequent loops and how
permutations are (almost) always done as readdressing in the
subsequent loop. The shown translation ofy = (Lmn

m ⊗ Ik)x
replaces every scalar in the shown translation ofy = Lmn

m x
by a vector of lengthk, similar as in Fig. 2(b).

Further, different types of implementations are possible,
briefly discussed next.

Single-size kernels:For small input sizes≤ 32 or 64,
matrix formulas are often implemented as fully unrolled code
blocks. In this case array scalarization and, to a lesser extent,
algebraic optimizations and scheduling are used to achieve
best performance and can be completely automated [7], [23],
[3], [24]. For example, aDFT8 kernel is implemented in a
few tens of lines of code.

Single-size loop code:If the input size is known in advance,
a fixed formula or data flow can be chosen and implemented
using nested loops arising from tensor products and iterative
products. As discussed before, scaling and readdressing is
merged into kernels for high performance. These implemen-
tations can be generated automatically using Spiral [23], [3],
[25]. One such single-size implementation can require up toa
few hundreds of lines of code.

General-size loop code:Only iterative algorithms lend
themselves to general-size loop code implementation. Again,
readdressing is folded into the computational kernel. An
example is the Numerical Recipes code [2], which implements
(20) for r = 2 as a triple loop in about one page of C code.

General-size recursive code:Translating formulas into re-
cursive code is complicated, but is at the heart of several high-
performance portable general-size FFT libraries [8], [26], [27],



4

[28]. A tutorial for a recursive radix-4 FFT is given in [29],
leading to about two pages of C code. Extension to vector
and multicore platforms considerably increases the code size:
for example, FFTW contains more than 200,000 lines of code.
The implementation of such libraries was also automated using
Spiral [28], [4].

III. M APPING FFTS TO MULTICORE CPUS

Historically, the Kronecker product formalism was used to
develop FFTs for parallel target platforms such as small-scale
and massive multiprocessors, and vector computers [30], [16],
[11]. We now discuss how to extend this approach to state-
of-the-art multicore CPUs. The new hardware characteristics
that need to be captured are: 1) multiple cores communicating
through shared caches or explicit messages, 2) SIMD short
vector instructions, and 3) the memory hierarchy and its
transfer restrictions, such as caches and DMA-based streaming
memory. We will address each of these features in three
steps. First, we identify relevant hardware parameters. Second,
we identify a set of matrix formulas that can be mapped
efficiently for these parameters. Third, we derive a variantof
the recursive Cooley-Tukey FFT (15) that is a member of this
set. In each case, we also briefly discuss the mapping to actual
code including further relevant code level optimizations.In
Section VI, we then instantiate the concepts and algorithmsto
an Intel Core and the Cell BE and briefly discuss GPUs and
FPGAs.

Choosing recursive algorithms is not a requirement. It is
possible to start from iterative algorithms or combine one
or two steps of recursion with an iterative algorithm and
achieve reasonable performance (as demonstrated by several
vendor libraries). However, many current high-performance
libraries for cache-based machines implement the recursive
FFT algorithms [6], [3], [4], [27], [26], [31] discussed here.

A. Parallelism: Multiple Cores

The multicore CPUs we target may have shared caches
(Fig. 4), private caches, or scratchpads (local stores) with
data being transferred in packets. Cache coherent architectures
transfer data implicitly between private and shared cachesas
required. Data transfer between scratchpads has to be managed
explicitly by the programmer. In each case, to obtain best
performance it is crucial to ensure that the whole data content
in a transfer (e.g., cache line or DMA packet) is used by the
receiver (spatial locality) and that the number of transfers is
minimized (temporal locality).

Machine model. We assume that the packet size is a
multiple of an atomic packet size ofµ complex numbers.
For instance, on a cache-based memory hierarchy, a cache
coherency event, a cache miss, or an eviction always transmits
a whole cache line (e.g., 64 bytes translates intoµ = 8 for
complex single-precision). In scratchpad based systems like
the Cell, DMA packets need to be of sufficient size for
performance; to yield reasonable performance, a Cell DMA
transfer between SPEs should be at least 128 bytes (µ = 16
for complex single-precision numbers) and a multiple of 16.

We consider CPUs withp cores. Well designed parallel code
is load balanced (all cores have the same amount of work),
with minimal data transmission between cores, performed in

core core

data cache

bus

1 2 4 4 5 1 1 3

6 3 5 7

+ + + +

v0 v1

add v2, v0, v1

v2

Vector registers

Vector operation

Fig. 4. Shared cache in a multicore CPU and SIMD vector extensions.

packets of sizeµ. On shared memory multicores this implies
that the code is free of false sharing (two cores accessing
different elements in the same cache line).

Matrix formulas solely built from

Ip ⊗ A, Dn, P ⊗ Iµ (P permutation,Dn diagonal)

with A a m × n matrix andµ | m,n can be implemented
efficiently as parallel code; we call themparallel constructs.
Namely,Ip ⊗ A is load balanced and embarrassingly parallel
(see Fig. 2(a)), i.e., it does not require any communication.
The same holds for scaling byDn. Finally, the communication
patternPn ⊗ Iµ transmits entire packets of sizeµ between
cores. Note that products of parallel constructs are again
parallel constructs.

Multicore Cooley-Tukey FFT. We now state a multicore
FFT built exclusively from parallel constructs, derived using
Table I [5]:

DFTmn =
(

Ip ⊗ (DFTm ⊗In/p)
)((Lmp

p ⊗In/pµ)⊗Iµ)
Tmn

m
(

Ip ⊗ (Im/p ⊗ DFTn)L
mn/p
m/p

)(

(Lpn
p ⊗ Im/pµ) ⊗ Iµ

)

. (22)

Implementation of (22) on a cache-based system relies on the
cache coherency protocol to transmit cache lines of lengthµ
between cores and requires a global barrier. Implementation
on a scratchpad based system requires explicit sending and
receiving of the data packets, and depending on the commu-
nication interface additional synchronization may be required.

Equation (22) can be used as outermost recursion to enable
multicore parallelization. The smaller DFTs are then expanded
using the short vector Cooley-Tukey FFT (23) or the vector
recursion (29) shown later in this section.

Historically, the Pease and the Six Step FFT (18) were start-
ing points for parallel iterative or recursive implementations,
but due to changed trade-offs these algorithms are no longer
a good choice in many cases.

Mapping to C code. OpenMP [32] is a good choice for
parallel code if it is well supported by the target platform’s
compiler. OpenMP allows the programmer to declare certain
loops to be parallel, and to specify variables as shared or
private. It enables the programming of sophisticated parallel
software without needing to deal with lower-level threading
details. As example, the formulaI4 ⊗ DFT2 in Fig. 2(a)
is translated into the OpenMP program snippet below. Note
that only a C#pragma is inserted to instruct the compiler
to parallelize thefor loop. If OpenMP is turned off, these
pragmas are ignored and the program becomes sequential.

double x[8], y[8];
#pragma omp parallel for
for (int i=0; i<4; i++)
{ y[2*i] = x[2*i] + x[2*i+1];

y[2*i+1] = x[2*i] - x[2*i+1];
}



5

Because of the regular structure of FFTs only a few more
issues have to be addressed for efficient OpenMP paral-
lelization. For correctness, the sharing and privatization of
variables with the OpenMPshared and private clauses
has to be done properly to avoid race conditions and other
problems. For performance, scheduling hints can be provided
(e.g.,schedule(static)). In addition, if only a subset of
the available cores is to be used, affinity can be set to choose
the subset. For example, two threads operating on the same
data should be physically close, i.e., share a high level of the
memory hierarchy.

On some target platforms no OpenMP compiler may be
available, in which case one must use threading libraries
like the portable Posix threads (pthreads) [33] library or use
operating system threading interfaces to build the required
parallel loops and barriers. While this approach can yield a
slight performance advantage, it requires understanding of the
target architecture, its memory consistency model, and cache
coherency protocols.

On the Cell processor the programmer needs to manage
and synchronize threads on the PPE and the SPEs, and
perform data movements via DMA transfers. Due to the Cell’s
unconventional architecture, libraries for it must be adapted to
take advantage of its features. While there have been some
programming paradigms ported to the Cell (including some
function offloading interfaces), for the class of programs dis-
cussed in this paper, performance is best obtained by avoiding
the overhead of such interfaces.

B. SIMD Vectorization

Most multicore CPUs include vector instruction sets. SIMD
vector extensions add vector registers (2-way double or 4-way
float on the Core i7 and the Cell), and much longer vectors will
be available in the near future (e.g., 16-way single precision
on Intel’s upcoming Larrabee GPU, and 4-way double and 8-
way single precision in AVX on the next generation of Intel
multicore CPUs). Vector instructions then operate on these
registers in parallel, providing high potential speed-up.A 4-
way vector addition is shown in Fig. 4.

Machine model. To obtain best performance on vector
extensions, data should be loaded and stored with vector
memory operations that transfer complete, naturally aligned
vectors. Unaligned and subvector accesses are expensive. All
operations on the vector registers should be vector operations
(vector addition, subtraction, and multiplication). Datareor-
ganization within registers (shuffles) are needed for FFTs but
should be minimized.

For this paper, we restrict ourselves to what we callcomplex
vectorization. We denote the machine vector length withν,
meaningν complex numbers are packed into a vector register
of length2ν; e.g., for 4-way float SSE,ν = 2.

All formulas built solely from

A ⊗ Iν , Dn (complex diagonal), and Lν2

ν

can be implemented efficiently with vector instructions; we
call them vector constructs. Moreover, ifA andB are vector
constructs, thenAB andIn ⊗ A are vector constructs.

First, A⊗ Iν is naturally vectorized (e.g., Fig. 2(b)): vector
code for y = (A ⊗ Iν)x can be obtained from scalar
code implementingy = Ax by simply replacing all scalar

operations by the corresponding vector operations, and all
scalar variables by vector variables. Second, we assume that
y = Dnx can be implemented efficiently forν | n. This is
a reasonable assumption: for instance, the SSE4.2 instruction
set implemented by the Core i7 contains instructions for the
efficient mapping of complex multiplications. Third,y = Lν2

ν x
can always be implemented with a small number of vector
instructions [34].

Short vector Cooley-Tukey FFT. We show a short vector
FFT algorithm that is built from vectorizable constructs, de-
rived from (15) using Table I. It requires only a small number
of in-register shuffles [35]:

DFTmn =
(

(DFTm ⊗In/ν)⊗Iν

)

Tmn
n

(

Im/ν⊗(In/ν⊗Lν2

ν )

(Ln
n/ν ⊗ Iν)(DFTn ⊗Iν)

)(

L
mn/ν
m/ν ⊗ Iν

)

. (23)

This FFT is composable with memory hierarchy optimized
FFTs. Namely, inserting (23) into the vector recursion (29)
shown later yields again a vector construct.

A somewhat more complicatedreal (using a real represen-
tation of matrices) short vector FFT is derived in [36], [37].

Traditional vector algorithms like the Four Step algo-
rithm (17) or the Stockham algorithm (21) were designed for
traditional vector computers with much longer vectors. Due
to the expensive permutations, they are not a good choice for
short-vector SIMD architectures.

Mapping to C code.The most convenient way to efficiently
use SIMD extensions is through intrinsic function interfaces
provided by most high-performance compilers. For instance,
the Intel C++ compiler, Microsoft’s VisualStudio C compiler,
IBM’s XL C compiler, and the GNU C compiler provide such
an interface for the supported SIMD extensions.

The programmer uses a data type and function abstraction
of the SIMD extensions to implement C code. The compiler
understands the data types and special functions and maps
the C program to the respective instructions. In this scenario
the programmer must select the appropriate instructions and
make sure machine restrictions like data alignment are met.
However, the programmer does not have to directly use assem-
bly and thus is spared from register allocation and instruction
scheduling. For example, the formulaDFT2 ⊗I4 in Fig. 2(b)
is implemented by the following C program snippet using
intrinsics for the Intel C++ compiler.__m128 is a built-in data
type to abstract XMM vector registers, and_mm_add_ps()
abstracts the SSE instructionaddps through a function call:

__m128 x[2], y[2];
y[0] = _mm_add_ps(x[0], x[1]);
y[1] = _mm_sub_ps(x[0], x[1]);

C. Memory Hierarchy

Our target multicores CPUs have a memory hierarchy with
multiple cores sharing the off-chip bandwidth. Machines with
memory hierarchies present algorithm designers with two
challenges:

• Temporal locality:Faster memory levels are smaller, and
the working set must be blocked to fit into that level to
minimize data transfers.

• Spatial locality:Data transfer between memory hierarchy
levels happens in packets. This implies that transferred



6

packets should be fully used to avoid wasting memory
bandwidth.

Machine model. A memory hierarchy can have multiple
levels. For a given level, we call the capacityN if it can
hold the working set for the computation ofy = Ax for
an N × N matrix A. This implies that the input vectorx,
the output vectory, and all necessary temporary arrays and
constants fit into that cache level. For instance, if we consider
double-precision, one (complex) value is 16 bytes. IfA is a
DFT, N is the cache size divided by 64 (assuming a factor
of 4 space overhead). As before, we assume that data is
transferred between the current level and the next lower level
in the memory hierarchy in packets ofµ complex numbers.
Moreover, if it is a set-associative cache, it can holdα lines of
µ elements in the same set, and hence there areσ = N/(αµ)
sets.

We call a formulaA a memory constructif during the
computation ofy = Ax, elements ofx are loaded once and
never stored, and elements ofy are never loaded and stored
once. Obvious memory constructs are

An (n ≤ N), P ⊗ Iµ (P a permutation), Dn. (24)

The first has a sufficiently small working set. The second loads
or stores complete packets. The last, diagonal scaling, poses
no problems.

One problematic construct in (15) has the formAm⊗In. As
Table II shows, the loop body accesses data at striden yielding
poor spatial locality unlessm ≤ α, which is very restrictive.
However, at the expense of some overhead, this condition can
be relaxed tom ≤ N/µ = σα throughbuffering. It is done
by first tiling the loop byµ and then copying the working set
for the innermost loop into contiguous memory. The tiled loop
corresponds to the formula

Am ⊗ In = (In/µ ⊗ (Am ⊗ Iµ))
(L

mn/µ

n/µ
⊗Iµ)

. (25)

Buffering means that in the above formula the conjugation
is implemented using actual copy operations (in contrast to
translating them into re-indexing) based on the third-lastentry
in Table II. The resulting pseudo code snippet is shown below.
On the Cell the copy operations are translated into DMA
instructions instead.

double x[m*n], y[m*n];
for (j=0;j<n/mu;j++)
{ // allocate buffers

double u[m*mu], v[m*mu];
// copy into buffer
for (k=0;k<m;k++)

u[k*mu:1:k*(mu+1)-1] =
x[j*mu+k*n:1:j*(mu+1)-1+k*n];

// compute A on buffered contiguous data
for (i=0;i<mu;i++)

v[i:mu:i+m*mu-mu] = A(u[i:mu:i+m*mu-mu]);
// copy data back
for (k=0;k<m;k++)

y[j*mu+k*n:1:j*(mu+1)-1+k*n] =
v[k*mu:1:k*(mu+1)-1];

}

The other problematic construct in (15) has the form(Im⊗
An)Lmn

m and can be handled similarly: the loop is again tiled
but only the load-side has a strided access and needs to be
buffered. Formally,

(Im⊗An)Lmn
m =

(

Im/µ⊗Lnµ
µ (An⊗Iµ)

)

(L
mn/µ
m/µ ⊗Iµ) (26)

expresses the tiling and again the permutationL
mn/µ
m/µ ⊗ Iµ is

implemented using explicit copy operations.
Memory hierarchy optimizations. To obtain FFT algo-

rithms suitable for the memory hierarchy (i.e., the algorithm
is a memory construct), we start with (15):

DFTmn = (DFTm ⊗In)Tmn
n (Im ⊗ DFTn)Lmn

m . (27)

DFTm ⊗In is a memory construct form ≤ α or m ≤ σα
if buffering is applied. This explains why relatively small
values ofm (the radix) work well in practice.Im ⊗ DFTn

is a memory construct forn ≤ N . If n > N , recursive
application of (27) will eventually yieldn ≤ N , producing
another memory constructDFTm ⊗In at each recursion step
along the way. This suggests that the largest possible radixm
is a good choice in each step. We show a two-level recursion
for further discussion:

DFTkmn = (DFTk ⊗Imn)T kmn
mn

(

Ik ⊗ (DFTm ⊗In)Tmn
n (Im ⊗ DFTn)Lmn

m

)

Lkmn
k . (28)

In (27), the only non-memory construct is oneLmn
m at every

recursion level withmn > N . Using buffering at each step
incurs too much overhead. Buffering the rightmostL’s in (28)
jointly is not possible. One solution is to give up on spatial
locality: all rightmostL’s are fused and merged into the first
loop as explained before. A better solution is to translate it
into a memory construct, which is indeed possible and done,
e.g., in FFTW [6]. Namely, the entire second line in (28) is
translated into thevector recursion

(

Ik ⊗ (DFTm ⊗In)Tmn
n

)

(

Lkm
k ⊗ In

)

(

Im ⊗
(

Ik ⊗ DFTn

)

Lkn
k

)

(

Lmn
m ⊗ Ik

)

(29)

with µ | n, k. This is repeated until the problematic(Ik ⊗
DFTn)Lkn

k is small enough to be a memory construct. The
formula manipulation leading to (29) manifests itself as loop
splitting and loop exchange in the equivalent code [6].

Historically, the iterative triple loop algorithm (20) was
used to compute FFTs on a single CPU. However, once the
data set does not fit in cache, cache thrashing occurs and the
performance drops drastically.

Mapping to C code. The structural optimization ensures
that the algorithm has good cache locality. When mapping to
code, the following additional issues have to be addressed:
1) how to create efficient basic blocks, 2) how to exploit
degrees of freedom, and 3) how to handle constants (twiddle
factors).

On modern deeply pipelined superscalar processors, the
recursive FFT has to be terminated with a basic block that is
sufficiently large but does not cause instruction cache misses.
Experiments show that a DFT of a size between4ν and
32ν (ν is the SIMD vector length) is a good choice. The
basic block is obtained by unrolling an FFT with minimal
operations count and performing scalar replacement to enable
efficient register allocation and scheduling. Additional small
gains may be achievable by C code scheduling, reduction of
the needed constants, and a few other techniques. This process
was automated in [7], [23]. The downside is considerably
increased code size. For example, FFTW [6] requires several
megabytes of C code to implement 1D FFTs based on (15).



7

The FFTs (22), (23), (25), (26), (29) contain degrees of
freedom (mainly the respective radix, if and where to buffer,
and when to terminate with a basic block) that can be searched
over for further platform adaptation. Dynamic programming
has been proven efficient in most cases [6], [3].

Finally, the twiddle constants are usually precomputed ex-
cept for possibly very large sizes for which the FFT becomes
memory bound. In this case computation on the fly can yield
considerable improvements. The decision is again handled by
search in FFTW and Spiral-generated libraries [4].

IV. M APPING FFTS TO GPUS AND FPGAS

On early machines, large programs with complex loop
structures were expensive, and memory access was relatively
cheap. Multiple passes through the entire data set were ac-
ceptable while recursive functions were hard to implement and
expensive. Thus, iterative FFT algorithms like (20)–(21) were
the best choice and were developed first. Current machines
with streaming memory (GPUs) or small memories (DSP
processors or embedded processors) operate in a similar trade-
off spot. On FPGAs, the simple loop structure of iterative
algorithms makes them the preferred choice. For example,
the regular Pease FFT and variants of the iterative FFT are
good choices for latency and throughput optimized FPGA
implementations, respectively [20], [11], [38]. In the following
we very briefly discuss GPUs and provide references for more
details.

Since the advent of programmable pixel shaders, general
purpose programming on GPUs became an increasingly viable
option. Earlier GPUs like Nvidia’s G79 series were a first
step towards that goal. However, with the Nvidia G80 series
GPUs have become truly programmable. While they are still
optimized for graphics-like workloads, mapping non-graphics
applications with similar structure can result in astonishing
performance including for the DFT. The caveat is that the
performance is often only achievable for data resident in GPU
memory; data transfer between GPU and host CPU is still very
expensive and may nullify any speed-up obtained through the
GPU’s high raw performance (we discuss this issue to greater
detail in Section VI-C). Intel’s upcoming Larrabee platform
may improve this situation.

Machine Model. State-of-the-art GPUs like the Nvidia G80
series applies ideas from symmetrically multithreaded (e.g.,
Tera MTA) and vector computers (e.g., Cray T90) to achieve
high streaming performance [39]. In addition, minimal control
flow, small computational kernels, and spatial locality area
requirement to achieve high performance.

GPU FFT algorithms. The above analysis suggests the
Stockham FFT algorithm (21), originally developed for vector
computers. Indeed, most FFT implementations developed for
GPUs [40], [41], [42], [10] are based on (21), and the radix
is chosen to match the GPU’s hardware parameters.

Mapping to code.In early GPU computing the computation
had to be mapped to pixel shaders using graphics languages
like OpenGL and DirectX. The language Cg was a first
step towards more general-purpose shaders that could be
programmed in a C-like language.

With the G80 series, Nvidia introduced CUDA [43] which
makes it possible to run more general compute-intensive
algorithms on GPUs. The program has to be broken into host

code (implemented in C with CUDA library calls) and CUDA
kernels; these kernels are programmed in a special C dialect.
The kernels are run in a data-parallel SPMD fashion on a
grid; a sufficiently large grid and homogeneous kernel code
allows for high throughput performance. It is paramount to
structure the data access pattern such that kernels that aregrid
neighbours operate on contiguous data (spatial locality),to
enable coalesced memory access. CUDA kernels are compiled
to a platform-independent byte code that the CUDA driver
translates into actual GPU code on its first invocation, intro-
ducing a significant overhead.

OpenCL [44] is an emerging open standard for parallel
programming of heterogeneous systems; one of its targets is
GPU computing and partitioning of computation across CPUs
and GPUs.

V. COMPUTERGENERATION OFL IBRARIES

The framework presented in this paper concisely describes
FFTs and enables structural optimization to efficiently match
algorithms to multicore platforms based on a few crucial
parameters. The formal nature of the approach has another
major advantage: it serves as a blueprint for the computer
generation of transform libraries. We have demonstrated this
with Spiral, a system that generates high-performance libraries
for linear transforms including the DFT. Given only textbook
algorithms (as in Section II), Spiral generates multithreaded,
vectorized source code. In Spiral, the matrix formalism is used
as domain-specific declarative language called SPL, on which
structural optimizations are performed by rewriting systems.1

The source code level optimizations are performed by Spiral’s
backend compiler (an extension of [23]). Spiral can generate
code for transforms of fixed input size [3], [5], [37], [45] or
general input size transform libraries [28], [4] that are similar
to FFTW.

Major advantages of library generation include the efficient
handling of the implementation complexity and the ability
to quickly port to new platforms. The complexity is due to
the combination of many non-trivial transformations including
those in this paper, the need for further code level optimiza-
tions (such as the unrolling of small kernels as was briefly
discussed), the degrees of freedom in these optimizations (such
as the choice of radix or the use or not use of buffering),
the need for specialization (e.g., for small code sizes, FFTW
provides many variants), the number of transforms needed (the
DFT variants discussed in Section II and other transforms),and
the set of available algorithms.

Problems with porting include different programming mod-
els (vector instructions, explicit DMA, OpenMP) and the
difficulty of maintaining performance, both exacerbated bythe
fast evolution of platforms.

A library generator greatly alleviates these problems, and, as
shown in the next section, often without losses and sometimes
even gains in performance. For example, an increasing number
of transform routines in Intel’s IPP (starting with 6.0) aregen-
erated by Spiral, the main reason being superior performance.

1To perform all necessary optimizations, Spiral uses in addition an exten-
sion calledΣ-SPL [25], [28] not described here due to lack of space.



8

VI. B ENCHMARKS ON MULTICORE CPUS

In this section we show FFT benchmarks of the fastest
libraries on multicores that are state-of-the-art at the time of
this writing. The focus is on an Intel Core quadcore system and
the IBM Cell BE with 9 cores, but we also include results for
the Nvidia GPU GTX280 with 240 cores. For the Core and the
Cell we consider Spiral generated libraries, which implement
the exact techniques discussed and the similar FFTW 3.2.2 For
the Core we also show Intel’s IPP 6.0 [22] and for the Cell
FFTC [9]. For the GPU, we extracted the results from [10].

The performance for input sizen is computed as
5n log2(n)/t, wheret is the runtime in seconds. This is a slight
overestimate since the true flop count is closer to4n log2(n)
and depends on the exact algorithm and recursion strategy
chosen.

A. Intel Multicore

Platform. We consider a 2.66 GHz Intel Core i7 quadcore
processor (Nehalem microarchitecture, 45 nm process) with
SSE 4.2 instruction set. It has three levels of cache and 25.6
GB/s memory bandwidth (using all three on-chip memory
controllers). Each core supports hyperthreading but for pro-
grams with high arithmetic density (like FFTs), SMT does
not provide any benefit, so in Spiral we use no more than 4
threads using OpenMP.

The Core i7 implements SSE 4.2, providing 2-way double
precision and 4-way single precision floating point vector
support. Moreover, it supports complex arithmetic operations
packing one complex double-precision number or 2 com-
plex single-precision numbers into vector registers. While
unaligned memory access is supported, the best performance
is achieved with 16-byte aligned vector loads and stores.

The Core i7 implements the shared memory paradigm. Each
core has a private 64 kB L1 cache and 256 kB L2. The 8 MB
L3 cache is shared among cores. All caches have 64 byte
cache lines (4 complex double precision numbers or 8 complex
single-precision numbers).

The theoretical peak performance is 85.12 Gflop/s for single
and 42.56 Gflop/s for double precision.

Results. Figs. 5(a) and (b) show results for out-of-place
double-precision and single-precision 2-power FFTs. FFTW
and the Spiral generated library [4] are compiled with the
Intel C++ compiler 11.0 and flags “-O3 -xS”; IPP is provided
as binary. The measurements are with “warm” cache.

For the Spiral generated libraries, the working set for input
sizen is 6n real numbers or4 1

16n real numbers if the twiddle
factors are computed on the fly. Figs. 5(a) and (b) indicate
maximal cache resident sizes. For example, in Fig. 5(a), an
FFT is L3 cache resident up ton = 217.

Overall in Figs. 5(a) and (b), Spiral is about equal and
often faster than the hand-written libraries. For small sizes,
the performance reaches up to 10 Gflop/s (double precision) or
14 Gflop/s (single precision); In double precision a slight drop
occurs for the first size (256) that is not completely unrolled.
This is due to the occurring index expressions that can be
fully precomputed and inlined only if the code is unrolled. The

2FFTW implements the recursive Cooley-Tukey FFT, buffering, vector
recursion, and SIMD vectorization, using algorithms similarbut not equal
to (22) and (23).

first speed-up through threading occurs already for a working
set that fits into the L1 cache of one core. Subsequently, the
performance ramps up as four cores are used on L1, L2, or L3
cache resident data yielding about 3x speedup over 1 thread.
The performance peaks at 15 Gflop/s (double precision) and
35 Gflop/s (single precision) for vectorized code running onall
4 cores. The drop for single precision and input size 16K may
be an artifact of imperfect search. For sizes outside the shared
L3 cache, the performance drops as the computation becomes
memory bound. At this point buffering, vector recursion, and
on-the-fly twiddle computation become crucial.

Since the FFTs used by the Spiral-generated library are
already adapted as explained in this paper, even a random
choice of recursion will yield reasonable performance (within
2x say). The detailed shape of the best recursion for a given
DFT size on a given multicore CPU is difficult to predict.
However, we made the following observations.

The multicore Cooley-Tukey FFT (22) is used as top-
level algorithm sizes that are large enough to benefit from
parallelization. Typically,m = µ in (22) leads to a yields good
performance. Further, the short vector Cooley-Tukey FFT (23)
provides perfect SIMD vectorization. On the Core i7n = ν
is a good choice.

For cache-resident sizes, the standard Cooley-Tukey FFT
(15) is a good choice withk small enough such thatDFTk can
be implemented fully unrolled, and the machine has enough
registers to support the computation. In practice,8ν ≤ k ≤
32ν (CPU-dependent) is a good choice. Once the working set
no longer fits into the last cache level (or into the local store on
the Cell) the involved trade-offs become tricky. In addition to
(15), the vector recursion (29) and buffering (25)–(26) become
fastest. On the Core i7 for large enoughDFTkmn, a typical
out-of-cache decomposition applies the vector recursion (29)
with 8 ≤ k,m ≤ 32 until the working set fits into the last
cache level. In addition,DFTk ⊗Imn and DFTm ⊗In are
buffered and the twiddle factors computed on the fly. This
coincides with our abstract analysis in Section III-C.

B. Cell BE

Platform. We consider a 3.2 GHz Cell BE with 9 cores,
including one traditional PowerPC core and 8 SIMD vector
cores (called synergistic processing elements, or SPEs). Each
SPE includes its own fast on-chip 256 KB local memory
(local store) that is designed to be explicitly managed by the
programmer. This means inter-core and main memory-local
store transfers must be performed via DMA; the achieved
DMA bandwidth increases with DMA packet size. The Cell
includes a set of 4-way single precision SIMD instructions
for the SPEs, accessible via C intrinsics. The vectorization,
however, is very similar to Intel’s SSE. The peak performance
of the Cell is 204.8 Gflop/s single precision (SPEs only) and
14.4 Gflop/s double precision.

Results.Fig. 5(c) shows the (latency) performance of Spiral
generated code (separate functions for every size [45] in this
case), FFTC [9], and FFTW 3.2, each using the interleaved-
complex data format. Spiral-generated code is compiled with
spu-gcc (flags: “-O2”), the other data is extracted from the
respective papers. In addition we include the224-sized DFT
from [46] and the216-sized DFT from [47] (both use split-



9

0

2

4

6

8

10

12

14

16

18

4 16 64 256 1k 4k 16k 64k 256k 1M

(a) Complex DFT (Intel Core i7, 2.66 GHz, 4 cores, double precision)

Performance [Gflop/s] vs. input size

Spiral generated

Intel IPP 6.0
Spiral generated

(1 thread)

FFTW 3.2

L1
1 core

L1
4 cores

L3
shared

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

(b) Complex DFT (Intel Core i7, 2.66 GHz, 4 cores, single precision)

Performance [Gflop/s] vs. input size

Spiral generated

Intel IPP 6.0

Spiral generated 

(1 thread)

FFTW 3.2

L1
1 core

L1
4 cores

L3
shared

0

10

20

30

40

50

60

64 256 1K 4K 16K 64K 256K 1M 4M 16M

Spiral generated

FFTC

FFTW

[47]

[46]

(c) Complex DFT (STI Cell BE, 3.2 GHz, 8 cores, single precision)

Performance [Gflop/s] vs. input size

Fig. 5. DFT performance on the 2.66 GHz Intel Core i7 (a), (b) and the 3.2 GHz Cell BE (c). Higher is better.

complex data format). The latter has been estimated to achieve
a throughput of 116 Gflop/s.

Spiral-generated code to date is limited to sizes for which
the working set fits into the union of all local stores; the same
seems to hold for FFTC. Both perform better than FFTW for
these sizes. The excellent performance of both [47] and [46]
is due to a highly optimized28-sized kernel.

All loads and stores from main memory, and all inter-
core communication (permutations in (22)) are performed
explicitly using DMA instructions. We use the Cell’s inter-
core messaging mechanisms for synchronization barriers.

The Cell allows initiated DMA instructions to proceed in
the background along with active computation. Although not
currently used in our code in Fig. 5(c), large out-of-chip DFT
sizes can use a multibuffering technique based on (25) to
(partially) hide memory costs. Data can be stored and loaded
for the previous and next iterations in separate buffers while
computation progresses for the current iteration. The explicit
move operations in (25) would become DMA instructions.

For parallel code, in contrast to the Core i7, the bestm,n
in (22) found are both close to

√
mn, since this maximizes the

packet sizeµ. The remaining choices found are similar to the
Core i7; inside (22) and (23), a (15) withm ≈ 128 is chosen.

Other results include [48], who achieve about 22 Gflop/s
on a single SPE for DFTs of input sizes210 and213 resident
in the SPE’s local store. [49] implement 2D and 3D parallel
SPE-resident FFT kernels achieving up to 30 Gflop/s.

C. GPU

Platform. We consider the Nvidia 280GTX with 240 cores
grouped into 30 multiprocessors, 1 GB of on-GPU main
memory and a GPU memory bandwidth of 140 GB/s. The
shader clock is 1.3 GHz, and each core can perform 1 fused
multiply-add and a multiply operation per cycle, leading to
936 Gflop/s peak performance. The connection between CPU
memory and GPU uses PCIe 2.0, which for 16 lanes has a
bandwidth of 16 GB/s (8 in each direction). The theoretical
(single precision) peak performance is 936 Gflop/s.

Results.The runtime results in Fig. 6 are taken from [10],
and appear to be the fastest at the time of this writing.
The memory configuration limits the achievable floating-point
performance for FFTs to 43.75log2 n Gflop/s out of GPU
memory (obtained from 140 GB/s GPU memory bandwidth),
and to 5log2 n Gflop/s out of host memory (obtained from
16 GB/s PCIe bandwidth). These bounds are included as gray
lines in Fig 6. The plot shows latency (one DFT is performed)

0

50

100

150

200

250

300

350

400

2 8 32 128 512 2k 8k 32k 128k 512k 2M 8M

Complex DFT (Nvidia GTX280, 1.3 GHz, 240 cores, single precision)

Performance [Gflop/s] vs. input size

GPU memory

bandwidth bound

host memory

bandwidth bound

latency performance

(from GPU memory)

throughput performance

(from GPU memory)

Fig. 6. DFT performance on a Nvidia GTX 280 GPU. Higher is better.

and throughput (223/n DFTs of sizen are performed in batch
mode), both with GPU memory resident data.

Throughput performance plays well to the strength of the
GPU and ramps up almost parallel to the memory bandwidth
bound untiln = 512; then cache limitations cause the perfor-
mance to drop to about 100 Gflop/s. We note that it is possible
(not specified in [10]) that the batch mode computesDFTn ⊗I
(interleaved DFTs) rather thanI ⊗ DFTn. Not surprisingly,
latency performance in contrast can amortize memory latency
only for large sizes.

It seems attractive to transparently utilize the GPU as
accelerator for batched single precision DFTs in CPU com-
putations. The problem is the PCIe bandwidth between host
memory and GPU memory, which yields the lower gray line
as performance bound, and realistically probably half of that.
Consequently, only very large sizes would benefit. However,
if the entire application can be implemented on the GPU, the
full performance can be harnessed, and can yield for the DFT
up to an eightfold performance improvement compared to a
CPU and up to fivefold compared to the cell.

D. FPGA

While not directly in the scope of this paper, we mention
for comparison that the FFT in [38], [13] achieves up to 40
Gflop/s throughput performance on a Virtex-4 (V4-FX140) for
a DFT256 in single precision floating point using all logic
available (more data is not readily available). On Virtex-6
twice the performance is possible using twice the resources.
This performance requires the data to be on-chip; the off-
chip bandwidth is typically about 10 GB/s in each direction.
Note that usually fixed point is used on FPGAs and that most
applications leave only a small part of the available logic for
FFTs. In summary, the main appeal of FPGAs for DFTs are
in saving power rather than as mere accelerator.



10

For commercial state-of-the-art FFTs on FPGAs see, e.g.,
[50], [51].

VII. C ONCLUSION

The end of CPU frequency scaling and advent of multicore
systems has two major consequences for compute inten-
sive signal processing applications. First, it marks the end
of free speed-up for legacy software. Second, the software
development skill required to achieve optimal performance
is dramatically increased. As we have shown for the DFT,
minimizing operations count alone does not yield optimal or
even close-to-optimal performance. Instead, the structure of
algorithms becomes crucial and has to be matched to the
target architecture. Specifically, the check list for high perfor-
mance is efficient parallelization, vectorization, and memory
hierarchy optimization. The necessary transformations are
likely to stay out of reach for compilers since they require
domain knowledge and the ability to assess the many available
choices. To handle the implementation complexity we believe
it is important to develop rigorous approaches that formalize
algorithmic optimizations by connecting the algorithm struc-
ture with architecture parameters. We have presented such a
framework for the DFT and used it to give an overview on
FFTs and optimizations for current multicores. Further, aswe
demonstrated with Spiral, the rigorous nature of the framework
enables automation: the computer generation of DFT libraries
that often achieve excellent performance compared to their
hand-written counterparts.

REFERENCES

[1] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore
architectures,”IEEE Signal processing Magazine, 2009.

[2] W. H. Press, B. P. Flannery, Teukolsky S. A., and Vetterling W. T.,
Numerical Recipes in C: The Art of Scientific Computing, Cambridge
University Press, 2nd edition, 1992.

[3] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W.
Singer, J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,”Proceedings of the IEEE, vol. 93, no. 2, pp. 232–275, 2005,
special issue on “Program Generation, Optimization, and Adaptation”.

[4] Y. Voronenko, F. de Mesmay, and M. Püschel, “Computer generation of
general size linear transform libraries,” inProc. Code Generation and
Optimization (CGO), 2009, pp. 102–113.

[5] F. Franchetti, Y. Voronenko, and M. Püschel, “FFT program generation
for shared memory: SMP and multicore,” inProc. Supercomputing (SC),
2006.

[6] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,
special issue on “Program Generation, Optimization, and Adaptation”.

[7] M. Frigo, “A fast Fourier transform compiler,” inProc. Programming
Language Design and Implementation (PLDI), 1999.

[8] “FFTW 3.2,” www.fftw.org.
[9] David A. Bader and Virat Agarwal, “FFTC: Fastest Fouriertransform

for the IBM Cell Broadband Engine,” inProc. Intl. Conference on High
Performance Computing (HiPC), 2007, pp. 172–184.

[10] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith,
and John Manferdelli, “High performance discrete fourier transforms
on graphics processors,” inProc. Supercomputing (SC), 2008, pp. 1–12.

[11] C. Van Loan,Computational Framework of the Fast Fourier Transform,
SIAM, 1992.

[12] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier
Transforms and Convolution, Springer, 2nd edition, 1997.

[13] “Spiral web site,”www.spiral.net.
[14] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A method-

ology for designing, modifying, and implementing Fourier transform
algorithms on various architectures,”IEEE Trans. Circuits and Systems,
vol. 9, pp. 449–500, 1990.

[15] A. Norton and A. J. Silberger, “Parallelization and performance analysis
of the Cooley-Tukey FFT algorithm for shared-memory architectures,”
IEEE Trans. Comput., vol. 36, no. 5, pp. 581–591, 1987.

[16] M. Hegland, “Block algorithms for FFTs on vector and parallel
computer,” inParallel Computing: Trends and Applications, pp. 129–
136. 1994.

[17] D. H. Bailey, “FFTs in external or hierarchical memory,”J. Supercom-
puting, vol. 4, pp. 23–35, 1990.

[18] D. B. Harris, J. H. Mc Clellan, D. S. K. Chan, and H. W. Schuessler,
“Vector radix fast fourier transform,” inProc. Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), 1977, pp. 548–551.

[19] J. W. Cooley and J. W. Tukey, “An algorithm for the machinecalculation
of complex Fourier series,”Math. of Computation, vol. 19, pp. 297–301,
1965.

[20] M. C. Pease, “An adaptation of the fast Fourier transform for parallel
processing,”Journal of the ACM, vol. 15, no. 2, April 1968.

[21] Paul N. Schwarztrauber, “Multiprocessor FFTs,”Parallel Computing,
vol. 5, pp. 197–210, 1987.

[22] Website, “Intel integrated performance primitives (ipp) 6.0,”
software.intel.com/en-us/intel-ipp.

[23] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language and
compiler for DSP algorithms,” inProc. Programming Language Design
and Implementation (PLDI), 2001, pp. 298–308.

[24] I. W. Selesnick and C. S. Burrus, “Automatic generation of prime length
FFT programs,” IEEE Trans. Signal Processing, vol. 44, pp. 14–24,
1996.

[25] F. Franchetti, Y. Voronenko, and M. Püschel, “Loop merging for
signal transforms,” inProc. Programming Language Design and
Implementation (PLDI), 2005, pp. 315–326.

[26] D. Mirković and S. L. Johnsson, “Automatic performance tuning in the
UHFFT library,” in Proc. Int’l Conf. Computational Science (ICCS).
2001, vol. 2073 ofLNCS, pp. 71–80, Springer.

[27] D. Takahashi, “An implementation of parallel 1-D FFT using SSE3
instructions on dual-core processors,” inProc. Int’l Workshop on State-
of-the-Art in Scientific and Parallel Computing (PARA), 2006, pp. 1178–
1187.

[28] Y. Voronenko,Library Generation for Linear Transforms, Ph.D. thesis,
Electrical and Computer Engineering, Carnegie Mellon University, 2008.

[29] Srinivas Chellappa, Franz Franchetti, and Markus Püschel, “How to
write fast numerical code: A small introduction,” inLecture Notes in
Computer Science. 2008, vol. 5235, pp. 196–259, Springer.

[30] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A
methodology for designing, modifying, and implementing Fourier trans-
form algorithms on various architectures,”IEEE Trans. Circuits,
Systems, and Signal Processing, vol. 9, no. 4, pp. 449–500, 1990.

[31] A. Ali, L. Johnsson, and J. Subhlok, “Scheduling FFT computation on
SMP and multicore systems,” inProc. Int’l Conf. Supercomputing (ICS),
2007.

[32] OpenMP,OpenMP C and C++ Application Pragram Interface, Version
1.0, 1998,www.openmp.org.

[33] Bill Gallmeister, POSIX.4, O’Reilly, 1994.
[34] Franz Franchetti and Markus Püschel, “Generating SIMD vectorized

permutations,” inProc. Int’l Conf. Compiler Construction (CC). 2008,
vol. 4959 ofLecture Notes in Computer Science, pp. 116–131, Springer.

[35] F. Franchetti and M P̈uschel, “Short vector code generation for the
discrete Fourier transform,” inProc. IEEE Int’l Parallel and Distributed
Processing Symposium (IPDPS), 2003, pp. 58–67.

[36] F. Franchetti and M P̈uschel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” inProc. IEEE Int’l Parallel and
Distributed Processing Symposium (IPDPS), 2002, pp. 20–26.

[37] F. Franchetti, Y. Voronenko, and M. Püschel, “A rewriting system for
the vectorization of signal transforms,” inProc. High Performance
Computing for Computational Science (VECPAR), 2006.

[38] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath
representation and manipulation for implementing DSP transforms,” in
Proc. Design Automation Conference (DAC), 2008, pp. 385–390.

[39] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su
Gatlin, Nick Mitchell, John Feo, and Brian Koblenz, “Multi-processor
performance on the Tera MTA,” inProc. Supercomputing (SC), 1998,
pp. 1–8.

[40] Kenneth Moreland and Edward Angel, “The FFT on a GPU,” in
Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics hardware,
2003, pp. 112–119.

[41] Naga K. Govindaraju and Dinesh Manocha, “Cache-efficient numerical
algorithms using graphics hardware,”Parallel Comput., vol. 33, no.
10-11, pp. 663–684, 2007.

[42] Akira Nukada, Yasuhiko Ogata, Toshio Endo, and SatoshiMatsuoka,
“Bandwidth intensive 3-d FFT kernel for GPUs using CUDA,” in
Proc. Supercomputing (SC), 2008, pp. 1–11.

[43] “Nvidia CUDA,” www.nvidia.com/cuda.
[44] “OpenCL,” www.khronos.org/opencl/.



11

[45] S. Chellappa, F. Franchetti, and Markus Püschel, “Computer generation
of fast Fourier transforms for the Cell Broadband Engine,” inProc. Int’l
Conf. Supercomputing (ICS), 2009.

[46] Alex C. Chow, Gordon C. Fossum, and Daniel A. Brokenshire, “A
programming example: Large FFT on the Cell Broadband Engine,” Tech.
Rep., IBM, May 2005.

[47] Jon Greene and Robert Cooper, “A parallel 64K complex FFTalgorithm
for the IBM/Sony/Toshiba Cell Broadband Engine processor,” in Global
Signal Processing Expo (GSPx), 2005.

[48] L. Cico, R. Cooper, and J. Greene, “Performance and programmabil-
ity of the IBM/Sony/Toshiba Cell Broadband Engine Processor,” in
Proc. (EDGE) Workshop, 2006.

[49] Paolo Bientinesi, Nikos Pitsianis, and Xiaobai Sun, “Multi-dimensional
array operations for signal processing algorithms,” inProc. Int’l Work-
shop on State-of-the-Art in Scientific and Parallel Computing (PARA),
2008.

[50] “4DSP,” www.4dsp.com/fft.htm.
[51] “Dillon FFT,” www.dilloneng.com/fft ip.


