TITLE

Spiral

BYLINE

Markus Rischel, Franz Franchetti, and Yevgen Voronenko
Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA

USA

{pueschel, franzf, yvoroné@ece.cmu.edu

SYNONYMS

none

DEFINITION

Spiral is a program generation system (software that generates ofhearg) for linear transforms and
an increasing list of other mathematical functions. The goal of Spiral isttimaaie the development and
porting of performance libraries. Linear transforms include the discretei¢r transform (DFT), discrete
cosine transforms, convolution, and the discrete wavelet transforminpbeto Spiral consists of a high-
level mathematical algorithm specification and selected architectural anchmgibitectural parameters. The
output is performance-optimized code in a high-level language suchgss€ibly augmented with vector
intrinsics and threading instructions.

DISCUSSION

I ntroduction

The advent of computers with multiple cores, SIMD (single-instruction multiptajdaector instruction
sets, and deep memory hierarchies has a dramatic effect on the deveigpimigh performance software.
The problem is particularly apparent for functions that perform matheataienputations, which form the
core of most data or information processing applications. Namely, onentwvorkstation the performance
difference between a straightforward implementation of an optimal (minimizingatpas count) algorithm
and the fastest possible implementation is typically 10-100 times.

As an example consider Fig. 1 which shows the performance (in gigaflqatingoperations per sec-
ond) of four implementations of the discrete Fourier transform for variipgt sizes on a quadcore Intel
Core i7. Each on uses a fast algorithm with roughly the same operationt &t the difference between
the slowest and fastest is 12—35 times. The bottom line is the code from NahReicipes [20]. The best
standard C code is about 5 times faster due to memory hierarchy optimizattosrastant precomputation.
Proper use of explicit vector intrinsics instructions yields another 3 timeplidixthreading for the four
cores, properly done, yields another 3 times for large sizes.

The plot shows that the compiler cannot perform these optimizations as ifotragost mathemati-
cal functions. The reason is in both the compiler’'s lack of domain-knoweledgeded for the necessary
transformations and the large set of optimization choices with uncertain outt@tthe compiler cannot
assess. Hence the optimization task falls with the programmer and requigdezable skill. Further,

DFT (single precision) on Intel Core i7 (4 cores)
Performance [Gflop/s] vs. input size
40

Best vector and parallel code
35

30

25
Multiple threads: 3x

20

15 Best vector code

10 f
Best scalar code Vem_\
5 o

—— £ <& £ — o °
—— g S==0

~ 2 g - <> *
Numerical recipes Memory hierarchy: 5x

16 64 256 1k 4k 16k 64k 256k M

Figure 1. Performance of different implementations of the discfetarier transform (DFT) and reason for the per-
formance difference (figure from [10]).

the optimizations are usually platform-specific and hence have to be repéttiavery new generation of
computers.

Spiral overcomes these problems by completely automating the implementationtamidaton pro-
cess for the functions it supports. Complete automation means that Spulacpsosource code for a given
function given only a very high-level representation of the algorithmshigrfunction and a high-level plat-
form description. After algorithm and platform knowledge are insertpdaScan generate various types of
code including for fixed and general input size, threaded or vectbrize

The approach taken by Spiral is based on the following key principles:

e Algorithm knowledge for a given mathematical function is represented irotine 6f breakdown rules
in adomain-specific languagé&ach rule represents a divide-and-conquer algorithm. The landsiage
based on mathematics, is declarative, and platform independent. Thesetigs enable the mapping
to various forms of parallelism from algorithm knowledge that is inserted@mig. It also enables the
derivation of the library structure for general input size implementationsobyputing the so-called
recursion step closure

e Platform knowledge is organized inparadigms A paradigm is a feature of a platform that requires
structural optimization and possibly source code extensions. Exampledarsiiared-memory par-
allelism or SIMD vector processing. Each paradigm consists of a gerafmeterized rewrite rules
andbase casesxpressed in the same language as the algorithm knowledge. The eseaasitute
a subset of the domain-specific language that maps well to a paradigm.ewhigerrules interact
with the breakdown rules to produce algorithms that are base cases,midats they are structurally
optimized for the considered paradigm. Examples of parameters include th2 & &dor length or
the cacheline size. Paradigms are designed to be composable.

e Spiral usesempirical searchto automatically explore choices in a feedback loop. This is done by
generating candidate implementations and evaluating their performance.ttewsgh theoretically
unsatisfying, search enables further optimization for intricate microarthitdaetails that may be
unknown or are not well understood.

In summary, Spiral integrates techniques from mathematics, programmingegjucompilers, automatic
performance tuning, and symbolic computation. The entire system Spiralimesrdispects of a compiler,
generative programming, and an expert system.

The remainder of this section describes the framework underlying Spidath& inner workings of the
actual system. The presentation focuses on linear transforms; exte$iSpiral beyond transforms are
briefly discussed in the end.

Algorithm Representation

Linear transforms. A linear transform is the function
x— Mz,

where M is a fixed matrix,z is the input vector, ang = Mz the output vector. Different transforms
correspond to different matricéd. For simplicity, M is referred to as transform in the following. Most
transforms)M are square: x n, which implies thatr andy are of lengthn. Most transforms exist for all
n=12,....

The possibly most famous transform is the DFT defined bytlyxen matrix

wy = e 2= /1.

n

DFT, = [wkf] :
0<k,l<n

Other examples include the discrete Hartley transform,
DHT,, = [cos(2mkl/n) + sin(2kl/n)]o<k o<, »
the discrete cosine transform (DCT) of type 2,

DCT-2, = [cos(k(¢ + %)Tr/n)]()gk,f<n’
as well as other types of discrete cosine and sine transforms, the Wadktard transform, the real DFT,
the discrete wavelet transform, the inverses and other variants of tbedarg transforms, and finite im-
pulses response filters.

Fast transform algorithms. SPL. If M isn x n and has few or no zero entries, then a direct com-
putation ofy = Max requiresO(n?) many operations. However, all the transforms mentioned above have
fast algorithms that reduce their complexity below that, typicallt@ log(n)). Every algorithm can be
expressed as a factorization of the transform matfixnto a product of sparse matrices. As an example
assumeVl = M, MsMsMy, theny = Mz can be computed in four steps as

t = Myx, uw= Mst, v = Mou, y = Mv.

If the M; are sufficiently sparse, this reduces the operations count.

The sparse matrices occurring in transform algorithms have structureahdie formally expressed
using basic matrices and matrix operators such as the direct sum and threoteldsonecker product. This
notation forms the basis for the language SPL (signal processing lagigeqgained next.

Basic matrices include the x n identity matrixI,,, diagonal matrice®,, = diag(ao,...,an—1), the
2 x 2 butterfly matrix

1 1
F2 - |:1 _1:|)

the stride permutation matrik?’, defined forn = km by the underlying permutation
0 im+j—jk+1,0<i<k, 0<j<m, (1)

and several others.

(spl) = (generi¢ | (basig | (transform) |
(sph----- (spl) | (product)
(sph @ ... ® (spl | (direct sum)
(sph @ --- - @(sph | (tensor product)
(generi¢ = ;i'i;ag(a07...,an,1) | ...
(basi¢ = I,|Ly|F2] ...
(transform = DFT, | DHT, |DCT-2,] ...

Table 1: A subset of SPL in Backus-Naur form; k are positive integers,; are real or complex numbers.

Matrix operators include the matrix product, the direct sum
A
son-[*],

and the tensor product
A®B = [ak,ZB]ng,g<n , for A =lay,]

Most important are the tensor products whdrer B are the identity:

0<k,l<n '

B
B
and, for example, ~ -
a b
a b
a b al3 blz| a b
[c d} © I3 = |:CIg d13:| c d
c d
- C d_

A (partial) description of SPL in Backus-Naur form is provided in Table 1.

Algorithms as SPL breakdown rules. Using SPL, the algorithm knowledge in Spiral is captured by
breakdown rules A breakdown rule represents a one-step divide-and-conquerithlgoof a transform.
This means the transform is factorized into sparse matrices involving otherally smaller, transforms.

The most famous example is the general-radix Cooley-Tukey fast Fotamesform (FFT):

whereT? is the diagonal matrix afwiddle factors Forn = 16 = 4 x 4, the factorization is visualized in
Fig. 2 together with the associated dataflow graph. The sniall€T,’s are boxes of equal shades of gray.

To terminate the recursion, base cases are needed. For example,-fuviesn a size two base case
is sufficient:

n = km,

DFTQ — FQ.

A few things are worth noting about this representation of transform itthgos:

()

e The representation (2) fint-free i.e., the input vector is not present.
e The representation (2) is declarative.
e Since the rule (2) is a matrix equation, it can be manipulated using matrix identibesex&mple,

both sides can be inverted or transposed, to obtain an inverse or tsaddpansform algorithm.

4

DFT,® I, Ti¢ I, ® DFT, L —
n - — |
., AL
DFT 4 — .'-.. . " oa —
S . M
(a) Matrix factorization (b) Data-flow graph

Figure 2: Cooley-Tukey FFT (2) fol6 = 4 x 4 as SPL rule and as (complex) data-flow graph (from right t).lef
Some lines are bold to emphasize the strided access @HE,’s (figure from [10]).

DFT, = (DFT.®I,)T5 (I, ® DFT,,)LY, (Cooley-Tukey FFT) n=km
DFT, = V, ' (DFT:®L,)(Ix ® DFT,,)V,, (Prime-factor FFT) n = km, ged(k,m) =1
DFT, = W, L1 ®&DFT,_)E,(I,&DFT,_)W,, (RaderFFT) n prime
DFT, = B,D,,DFT,, D, DFT,, D) B,, (Bluestein FFT) n > 2m
DFT, = P/, (DFT2n & (Ix—1 ®i Com rDF Ty, ;/2:)) (RDF Tk ®1,n), n = 2km
RDFT, = (P, ®) (RDFT2 @ (Ix—1 ®; Dam rDF Ty, ;/0)) (RDFT2, ®I), n=2km
rDFT,. = L} (Ix ®i rDF Ty, (i+u)/k) ((DFTog @Im), n = 2km

Table 2: A selection of breakdown rules representing algorithmvidedge for the DFTrDFT is an auxiliary trans-
form and has two paramete®DF T is a version of the real DFT.

e A breakdown rule may have degrees of freedom. An example is the chioice ¢2).

e A rule like (2) does not specify how to compute the smaller transforms. This isniblé rules have
to be applied recursively until an algorithm is completely specified. Becalifiee that, and the
availability of different rules for the same transform, there is a large s&iates. In other words, the
relatively few existing rules yield a very large space of possible algoritiithis makes rules a very
efficient representation of algorithm knowledge. For exampley fer2¢, (2) alone yield® (5 /¢3/2)
different algorithms, all with roughly the same operations count.

Spiral contains about 200 breakdown rules for about 40 transf@wonse of which are auxiliary. The most
important rules for the DFT, without complete specification, are shown iteTAabNote the occurrence of
auxiliary transforms.

Spiral Program Generation: Overview

The task performed by Spiral is to translate the algorithm knowledge gepied as in Table 2) for a given
transform into optimized source code (we assume C/C++) for a given ptatfo

The exact approach for generating the code depends on the typdeofiat has to be generated. The
most important distinctions are the following:

e Fixed input size versus general input sizethe input size is known (e.g., “DFT of size 4” as shown
in Fig. 3(a) and (b)) the algorithm to be used and other decisions cantbamileed at program
generation time and can be inlined. The result is a function containing onlg kg basic blocks of
straightline code. If the input size is not known, it becomes an additionat amql the implementation

5

(a) Fixed input size, unrolled (b) Fixed input size, looped (c) Geriepalt size library, recursive

void dft_4(cpx *Y, cpx *X){ void dft_4(cpx *Y, cpx *X){ struct dft : public Env{
cpx s, t, t2, t3; cpx T[4]; dft(int n); /I constructor
t = (X[0] + X 2]); cpx W2] = {1, _I_}; void conpute(cpx *Y, cpx *X);
t2 = (X[0] - X2]); for(int i =0; i <=1; i++) { int _rule, f, n;
t3 = (X[1] + X3]); cpx w=Wil; char *_dat;
s = _|_*(X[1] - X3]); T[2xi] = (X[i] + X[i+2]); Env *chl, x*ch2;
Y[0] = (t + t3); T[2#i+1] = we(X[i] - X[i+2]); };
Y[2] = (t - t3); }

Y[1] = (t2 + s); for(int j =0; j <=1; j++) { void dft::conmpute(cpx *Y, cpx *X){
Y[3] =(t2 - s); Y[jl = T[j] + T[j+2]; ch2->conmpute(Y, X, n, f, n, f);
} Y[2+] = T[j] - T[j+2]; chl->conpute(Y, Y, n, f, n, n/f);

} }

}

Table 3: Code types.

becomes recursive (Fig. 3(c)). The actual algorithm, i.e., recursivgpatation is now chosen at
runtime once the input size is known.

e Straightline code versus loop code (fixed input size or8yaightline code (Fig. 3(a)) is only suitable
for small sizes, but can be faster, due to reduced overhead andsedrepportunities for algebraic
simplifications. Loop code requires additional optimizations that merge redtifabps.

e Scalar code versus parallel cod€ode that is parallelized for SIMD vector extensions or multiple
cores requires specific optimizations and the use of explicit vector intrinstbseading directives.

The program generation process is explained in the next four sectioresponding to four different
code types of increasing difficulty. The order matches the historic davelop since for each move to the
next code type at least one new idea had to be introduced. The typesaamiieas (in parentheses) are

e Fixed input size straightline code (SPL, breakdown rules, feedbagh loo
e Fixed input size loop code)-SPL, loop merging)

e Fixed input size parallel code (paradigms, tagged rewriting)

e General input size code (recursion step closure, parametrization)

Spiral generates code for fixed input size transforms (first threet§uile shown in Fig. 3. The input is
the transform symbol (e.g., “DFT”) and the size (e.g., “128"). The otifpa C function that computes the
transform {{ = DFT 25 x in this case). Depending on the code type, not all blocks in Fig. 3 may loe use

The block diagram for general input size is shown later.

Fixed Input Size: Straightline code

Given as input to Spiral is a transform symbol (“DFT") and the input.siEke program generation does
not need the parallelization and loop optimizations blocks. FurtheX;-8¢L is needed, which means the
SPL-toX-SPL block and thé&:-SPL-to-code block are joined to one SPL-to-code block.

Algorithm generation. Spiral uses a rewrite system that recursively applies the breakddes(aig.,
Table 2) to generate a complete SPL algorithm for the transform. As saittlibfre are many choices due
to the choice of rule and the degree of freedom in some rules fay(2)).

SPL to C code and optimization. The SPL expression is then compiled into actual C code using the
internal SPL compiler, which recursively applies the translation rulesis&dtn Table 4.

Transform (“DFT”)
inputsize (“128")

(breakdown rules) Algorithm generation
(paradigms) algorithm (SPL)

parallelization Joop SPL->3-SPL
optimizations loop merging
algorithm (2-SPL)
2-SPL->C code
Code optimizations
source code (C)

Spiral Performance evaluation
(fixed input size)

Cimplementation:
DFT_128(*y, *x) { .. }

Figure 3: Spiral program generator for fixed input size functions: $toaightline code, n&-SPL is needed and SPL
is translated directly into C code.

SPL expressio® Pseudo code foj = Sz

<code for: t = Bx>
AnBn <code for: y = At>

for (i=0; i<m i++)
I @ An <code for: y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1])>

for (i=0; i<n; i++)
Am ® In <code for: y[i:n:i+mn-n] = A(x[i:n:i+mn-n])>
D, for (i:o; i<r1; i+-+)

y[il = Dli]*x[i];

for (i=0; i<k; i++)

Ly™ for (j=0; j<m j++)
ylixmej] = x[j*k+i];

£ y[0] = x[0] + x[1];

y[1] = x[0] - x[1];

Table 4. Translation of SPL to code. The subscript4fB specifies the (square) matrix size[b: s: e] denotes
(Matlab-style) the subvector af starting atb, ending ate, extracted at strids. D is a diagonal matrix, whose
diagonal elements are stored in an array with the same name.

(a) Two stages (b) One stage

Figure 4: The loop merging problem fai7, ® F»)L§.

All loops are unrolled and code level optimizations are applied. These m@audy scalarization,
constant propagation, and algebraic simplification.

Performance evaluation. The runtime of the resulting code is measured and fed into the search block
that controls the algorithm generation.

Search. The search drives a feedback loop that generates and evaluaterdifdlgorithms to find
the fastest. Dynamic programming has proven to work best in many caseghbutechniques including
evolutionary search or bandit-based Monte Carlo exploration havesbedied.

Fixed Input Size: Loop code

The approach to generating straightline code can also be used to génepatede (Table 4 yields loops),
but the code will be inefficient.
The problem: Loop merging. To illustrate the problem consider the SPL expression

(14 ® Fy)L§.

Application of Table 4 yields the code visualized in Fig. 4(a):

/I Input: double x[8], output: y[8]
double t[8];
for(int i=0; i<4; i++) {
for (int j=0; j<2; j++) {
tlix2+4]] = x[j*4+i];
}

}

for (int j=0; j<4; j++) {
y[2*j] t[2«j] + t[2+j+1];
y[2+j+1] = t[2+j] - t[2+]+1];

This is known to be suboptimal since the permutation (first loop) can be fusledhe subsequent compu-
tation loop, thus eliminating one pass through the data (Fig. 4(b)):

/I Input: double x[8], output: y[8]
for (int j=0; j<4; j++) {
y[2*j] x[j] + x[j+4];
} y[2*j+1] = x[j] - x[]+4];
This transformation cannot be expressed in SPL and, in the geneealicaifficult to perform on C code.
To solve this problem3:-SPL was developed, an extension of SPL that can express loopkofhmerging
is then performed by rewriting-SPL expressions.

3-SPL. ¥-SPL adds four basic components to SPL.:

1. index mapping functions,

2. scalar functions,

3-SPL expressioly Code fory = Sz

for(i=0; i<n; i++)

G(f") ylil = x[f(i)];
S(TN) i)

P T e on

diag (/") T S T e
S o ot fort y LAl v x>

Table 5: Translation of2-SPL to code.

3. parametrized matrices,

4. iterative sunp .

These are defined next.
An integer interval is denoted with, = {0,...,n — 1}, and an index mapping functighwith domain
I, and rangdy is denoted with
N, = Iy i f(0).
An example is the stride function
hp N oI, = Iys i b+ids, fors|N. (4)

Permutations are written g&—" = f" such as the stride permutation in (1).

A scalar functionf : I, — C; i — f(i) maps an integer interval to the domain of complex or real
numbers, and is abbreviated 5§ C. Scalar functions are used to describe diagonal matrices.

3-SPL adds four types of parameterized matrices to SPL (gather, scattraytation, diagonal):

G(f*N), S(f"7N), P(f™"), and diag (f"7°).
Their translation into actual code (which also defines the matrices) is sholabie 5. For example,
1
G = - . stz = cn
1

Finally, ¥-SPL adds the iterative matrix sum

n—1
> A
i=0

to represent loops. Thé; are restricted such that no twhy have a non-zero entry in the same row.
The following example shows ho® is converted into a sum4 is assumed to be x n and domain
and range in the occurring stride functions are omitted for simplicity.

A
A A

= S(ho,1)AG(ho1) + -+ + S(h-1)n1) AG (A —1)n,1)

A

k—1
= Z S(hin1)AG(hin,1)
=0

y -——— X
% } cache block
= 5

(a) Ii ® F» (b) (I4®F2)L4

} cache block

Figure5: Mapping SPL constructs to four threads. Each thread coesprieF;. Both computations are data parallel,
but (a) produces no false sharing whereas (b) does.

Intuitively, the conversion t&-SPL makes the loop structure of= (I, ® A)z explicit. In each iteration,
G(-) andS(-) specify how to read and write a portion of the input and output, respégtieebe processed
by A.

L oop merging using X-SPL and rewriting. UsingX-SPL, the loop merging problem identified before
in the examplé I, ® F»)L§ is solved by the loop optimization block in Fig. 3 as follows:

3
(I4 X Fg)Li — <Z S(h2i, 1)F2G(h2i, 1)) P(&SL)
=0

_>

M

(S(h%, DFG(E3 0 hy;. 1))

1=0

w |l

o3 (Sthas)BG(,)

7=

[e=]

The first step translates SPL ink»-SPL. The second step performs the loop merging by composing the
permutation/§ with the index functions of the subsequent gathers. The third step simpliegshilting
index functions. After that, actual C code is generated using Table 5.

Besides the added loop optimizations block in Fig. 3, the program generatidmop code operates
iteratively exactly as for straightline code.

Fixed input size: Parallel code

As was illustrated with Fig. 1, for compute function compilers usually fail to optimalfyat all) exploit the
parallelism offered by a platform. Hence the task falls with the programmerhak to leave the standard C
programming model and insert explicit threading or OpenMP loops foeghaemory parallelism and so-
called intrinsics for vector instruction sets. However, doing so in a straigidird way does not necessarily
yield good performance.

The problem: Algorithm structure. To illustrate the problem consider a target platform with four
cores that share a cache with a cache block size of two complex numbers.

The first goal is to obtain parallel code with four threads foro F5 visualized in Fig. 5(a). The
computation is data parallel; hence, the loop suggested in Table 4 can beetkfiar example, by an
OpenMP parallel loop. Note that each processor “owns” as workingxeetly one cache block, hence the
parallelization will be efficient.

Now consider again the SPL expressidn @ F»)L§ visualized in Fig. 5(b). The computation is again
data parallel, but the access pattern has changed such that alwaysoteegors access the same cache
block. This produces false sharing, which triggers the cache cotyepeatocol and reduces performance.

10

(smp = (generig | (basic |

(smp - ---- (smp | (product)
(smp & ... (smp | (direct sum)
I, ® (smp | (tensor product)
(generig = ;i.i.ag(ao, ceyAn_1)]| ...
(basio = [, ®A,|PQI,]| ...

Table 6: smpp, 1) base cases in Backus-Naur formis a positive integeiy; are real or complex numbers.

The problem is obviously the permutatiéf}. Since the rules (e.g., those in Table 2) contain many, and vari-
ous, permutations, a straightforward mapping to parallel code will yieldliasgéoptimal performance. To
solve this problem inside Spiral, another rewrite system is introduced tocasgt algorithms before map-
ping to parallel code. The restructuring will be different for differfamins of parallelism, called paradigms.
Paradigms and tagged rewriting. A paradigmin Spiral is a feature of the target platform that requires
structural optimization. Typically, a paradigm is a form of parallelism. Examipidsde shared memory
parallelism (SMP) and SIMD parallelism. A paradigm may be parameterized,by.ghe vector length
v for SIMD parallelism. In Spiral, a paradigm manifests itself by another rewyistem provided by the
additional parallelism block in Fig. 3 (and backend extensions irtH8#PL to C code block to produce the
actual code).
The goal of the new rewrite system is to structurally optimize a given SPLesgfum into a form that
can be efficiently mapped to a given paradigm. The rewrite system is bunittfre three main components:

e Tagsencode the paradigm and relevant parameters. Examples include thee¢ags™for SIMD
vector extensions and the tag “s(ppu)” for SMP. The meaning of the parameters is explained later.

e Base caseare SPL constructs that can be mapped well to a given paradigm. As illdsatadge, one
example is any,, ® A,, for p-way SMP.

e Tagged rewrite rulegre mathematical identities that translate general SPL expressions towaels b
cases. An example is the rule (assumniig)

smp(p,u) smp(p,u) smp(p,)

The rule extracts thg-way parallel loop (base casé) ® (/,,/, @ Ap) from A, @ I,. The stride
permutationd.]”” and ;""" are handled by further rewriting.

Example: SMP. For SMP, the tag snip, 1) contains the number of processprand the cache block
sizey. Base cases includg ® A,, andP ® I,,, whereP is any permutation” ® I,, moves data in blocks
of sizeu, hence false sharing is avoided. From these, other base caseswaitt kecursively as captured
by the sketched grammar in Table 6.

Some SMP rewrite rules are shown in Table 7. Note that the rewriting is notiejnand not every
sequence of rules terminates. Once all tags disappear, the rewriting tersnina

Example: SIMD. For SIMD, the tag ve@/) contains only the vector length The most important base
case isA,, ® I,,, which can mapped to vector code by generating scalar codé,f@nd replacing every
operation by its correspondingway vector operation. Other bases cases incligfe L3, andng, which
are generated automatically from the instruction set [9]. Similar to Table 6,ntiire set of vector base
cases is specified by a grammar recursively built from the above sgecistructs.

Parallelization by rewriting. In Spiral, parallelization adds the new parallelization block in Fig. 3. The
parallelization rules are applied interleaved with the breakdown rules toager@PL algorithms that have
the right structure for the desired paradigm. For example, for the DFT itapesate as follows:

11

AB — A B
<~

< =~
smp(p, 1) Smp(rg,u) smp(p, 1) .
Am, ®[n — (me®ln/p) (Ip®(A7n®In/p)) (Lpp®ln/p>
smp(p, 1) smp(p,)
(I, @ L7 P) (L5 @ L))
P m/p P m/p
—_—
Lmn N smp(p,p) smp(p, u)
—~ (L @ Lujp) (Ip @ L")
smp(p, 1)
smp(p,p) smp(p, i)
In @A, — I, ® (Inm/p® An
P (/p)
SMp(p, 1)
(P®I) — (P®I,,)®I,
N——
smp(p, 1)

Table 7: Examples of sm{p, 1) rewrite rules.

DFT,,, — ((DFT,®L,)T/" (I, ® DFT,)L"")

SMp(p,) smp(p,)

— (DFT,®I,) T,”* (I, ®DFT,) LM"

smp(p,u) SMA(p, 1) smp(p, i) smp(p, 1)

- ((me ® In/pu) ® I#) (Ip ® (DFTy, ®In/p)) ((ngp ® In/pu) ® Iu)
1 (1, @ (L @ DET) (5 © L) (L © L) © 1)

m/p

First, Spiral applies the breakdown rule (2). Then the parallelization ttdasform the resulting SPL
expression in several steps. Note how the final expression has ardgsapatterns (permutations) of the
form P ® I,, and all computations are in the forfp® A (and the diagondl}’"). The smaller DFTs can be
expanded in different ways, e.g., by rewriting for SIMD. Further chsiare used for search.

The remaining operation of Spiral includingSPL conversion and search proceeds as before.

General Input Size

An implementation that can compute a transform for arbitrary input size isfuedtally different from one
for fixed input size (compare Fig. 3(b) and (c)). If the input sizie fixed, e.g.n = 4, the computation is
(x,y) -> dft_4(y, x)

and all decisions such as the choice of recursion until base casesmahed can be made at implementation
time. In an equivalent implementation (called library) for general inputssjze

(n,x,y) ->dft(n,y,x)

the recursion is fixed only once the input size is known. Formally, the coriguitaow becomes

n->((x,y) ->dft(n,y,x))

which is an example of function currying. A C++ implementation is sketched in¥®, where the two
steps would take the form

dft = f = new dft(n); // initialization
f->compute(y, x); /I computation

12

The first step determines the recursion to be taken using search orticswaisd precomputes the twiddle
factors needed for the computation. The second step performs the egtopltation. The underlying
assumption is that the cost of the first step is amortized by a sufficient niwhbemputations. This model
is used by FFTW [15] and the libraries generated by Spiral.

To support the above model, the implementation needs recursive funclibagnajor problem is that
the optimizations introduced before operate in nontrivial ways acrosgifumboundaries, thus creating
more functions than expected. The challenge is to derive these functitomaatically.

The problem: Loop merging across function boundaries. To illustrate the problem consider the
Cooley-Tukey FFT (2). A direct recursive implementation would condifbar steps corresponding to the
four matrix factors in (2). Two of the steps would call smaller DFTSs:
void dft(int n, cpx *y, cpx *x) {

int k = choose_factor(n);

int m= n/k;

cpx *t1l = Pernmute x with L(n,Kk);

/I t2 = (I_k tensor DFT_m) *tl

for(int i=0; i<k; ++i)

dft(m t2 + mxi, t1 + mi);

/I t3 = T'’n_m =*t2, f() computes diagonal entries of T

for(int i=0; i<n; ++i)
t3[i] =f(i) * t2[i];

/'y = (DFT_k tensor I_m) *t3, cannot call

/I dft() recursively, need strided 1/O

for(int i=0; i<m ++i)

dft_stride(k, m y + i, t3 +i);

/I to be implemented
void dft_stride(int n, int stride, cpx *Y, cpx *X);

Note how even this simple implementation is not self-contained. A new fundidnst ri de is
needed that accesses the input in a stride and produces the outpusatieatride (see the data flow in
Fig. 2).

However, as explained before, loops should be merged where pos$liblixed size code, Spiral would
merge the first loop with the second, and the third loop with the fourth USHSIPL rewriting. The same
can be done in the general size recursive implementation but the mergssgsfoinction boundaries:
void dft(int n, cpx *y, cpx *x) {

int k = choose_factor(n);

/I t1 = (I_k tensor DFT_m)L(n,k) * X

for(int i=0; i < k; ++i)

dft _iostride(m k, 1, t1 + mri, x + mri);

/'y = (DFT_k tensor I_m) T°'n_m

/I diagonal entries of T are now precomputed in precomp_f[]

for(int i=0; i < m ++i)

dft _scaled(k, m precomp_f[i], vy + i, t1 +i);
}

/I to be implemented

void dft_iostride(int n, int istride, int ostride, cpx *y, cpx *X);

void dft_scaled(int n, int stride, cpx *d, cpx *y, cpx *X);

Now there are two additional functiondf t _i ost ri de reads at a stride and writes at a different stride,
df t _scal ed first scales the input and then performs a DFT at a stride.

So at least three functions are needed with different signatures. ugowtiee two additional functions are
also implemented recursively, possibly spawning new functions. Calling thastiongecursion stepshe
main challenge is to automatically derive the complete set of recursion stegsdh@alled the “recursion
step closure.” Further, for each recursion step in the closure, thatsigrhas to be derived.

Recursion step closure by X-SPL rewriting. Spiral derives the recursion step closure usir§PL and
the same rewriting system that is used for loop merging. For example, the tlitioadl recursion steps
in the optimized implementation above are automatically obtained from (2) as folReesirsion steps are

13

Algorithm knowledge
(breakdown rules)

Platform knowledge
(paradigms)

arallelization
P recursion steps and recursions (5-SPL)

I base case
algorithms (5-SPL)
y

v

Clibrary

Figure 6: Spiral program generator for general input size libraries

marked by overbraces.

— — —
DFT, — (DFT,,®1;)T{ (I,;x ® DFT,)LY
k—1 n/k—1
— (Z S(h@k)DFTn/kG(hi,k)) diag () | Y S(hjk1) DFT.G(hj1) | P(€2)
i=0 §=0
k—1 n/k—1
— S(hix) DFT,,) diag (f o ki) G(hi) Z S(hjk,1) DETy, G(hj 1)
1=0 =
k—1 n/k—1
— S(hik) DFT,,)y, diag (f o hix)G(hir) Y S(hjr1) DFT, G(hj 1) (5)
i=0 =0

The first step applies the breakdown rule (2). The second step tetwei-SPL. The third step performs
loop merging as explained before. The fourth step expands the bragedude the context. The two
expression under the braces correspond to the two functibbsi ost ri de anddft _scal ed. The
process is now repeated for the expression under the braces untikci®seached. In this example, only one
additional function is needed, i.e., the recursion step closure consisiarainutually recursive functions.
The derivation of the recursion steps also yields-&PL specification of the actual recursion, i.e., their
implementation by a recursive function (e.g., (5) OFT),,).

For the best performance the braces may be extended to also includepthegoesented by the iterative
sum. Moving the loop into the function enables better C/C++ compiler optimizations.

If the implementation is vectorized or parallelized, the initial breakdown ruledfiest rewritten as
explained before and then the closure is computed. The size of the closypically increased in this case.

Program generation for general input size: Overview. The overall process is visualized in Fig. 6. The
input to Spiral is now a (sufficient) set of breakdown rules for a givansform or transforms. The rules are
parallelized if desired using the appropriate paradigms; then the recustsipigclosure is computed, which
also yields the actual recursions.

The resulting recursion steps need base cases for termination. Thagnarated using the algorithm
generation block from the fixed input size Spiral (Fig. 3) for a rangantdll sizes (e.gn < 32) to improve
performance. These, the recursion steps, and the recursions anéoféhe final block to generate the final

14

library. Among other things the block performs that/cold partitioningthat determines which parameters
in arecursion step are precomputed during initialization and which becomeptars of the actual compute
function. Finally, the actual code is generated (which now includess&euiunctions) and integrated into
a common infrastructure to obtain a complete library.

Many details are omitted in this description and are provided in [30, 29].

Extensions

A major question is whether the approach taken by Spiral can be exteegeddthe domain of linear
transforms, while maintaining both the basic principles outlined in the introductidritee ability to auto-
matically perform the necessary transformations and reasoning. Fargiess in this direction was made in
[7] with the introduction of the operator language (OL). OL generalizds8Pconsidering operators that
may be nonlinear and may have more then one vector input or output. Imipmotestructs such as the tensor
product are generalized to operators. First results on programagiemefor functions such as radar imag-
ing, Viterbi decoding, matrix-multiplication, and the physical layer functiohgioeless communication
protocols have already been developed.

RELATED ENTRIES

FFTW
ATLAS
FFT

BIBLIOGRAPHIC NOTESAND FURTHER READING

Spiral is based on early ideas on using tensor products to map FFT algotilpasllel supercomputers
[16]. The first paper describing SPL and the SPL compiler is [32]. Bed®4] for basic block optimizations
for transforms. The first complete basic Spiral system including SPLidlgogeneration and search was
presented in [23] with a more extensive treatment in [24] and the probabtyoverview paper [22], which
fully develops SPL for a variety of transforms. The path to complete automititire transform domain
continued withx-SPL and loop merging [11], the introduction of rewriting systems for SIMDtarization
[8, 13] and base case generation [9], SMP parallelization [12], andbdited memory parallelization in
[2, 3]. The final step to generating general size, parallel, adaptivarids was made in [30, 29]. The
generated libraries are modeled after FFTW [15], which is written by hahddes generated basic blocks
[14].

The most important extensions of Spiral are the following. Extensions tergenVerilog for field-
programmable gate-arrays (FPGASs) are in [19, 18]. Search teclsnidfoer than dynamic programming are
developed in [26, 5] The use of learning to avoid search was studie®j®[2Finally, [7, 4, 17] make the
first steps towards extending Spiral beyond the transform domain ingldkenfirst OL description. The
Spiral project website with more information and all publications is located] at [1

A good introduction to FFTs using tensor products are the books [27 A228bmprehensive overview
of algorithms for Fourier/cosine/sine transforms is given in [21, 31]. Acjmtroduction to mapping FFTs
to multicore platforms is [10].

References

[1] Spiral project websitewww. spi ral . net .

15

[2]

[3]

[7]

[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Andreas Bonelli, Franz Franchetti, Juergen Lorenz,®MarRischel, and Christoph W. Ueberhuber. Automatic
performance optimization of the discrete Fourier tranmsfon distributed memory computers. limternational
Symposium on Parallel and Distributed Processing and Apgitbn (ISPA) volume 4330 of_ecture Notes In
Computer Scieng@ages 818-832. Springer, 2006.

Srinivas Chellappa, Franz Franchetti, and Markiisdhel. High performance linear transform program genera-
tion for the Cell BE. InHigh Performance Embedded Computing (HPEZD09.

Frédceric de Mesmay, Srinivas Chellappa, Franz Franchetti, aackivs Rischel. Computer generation of effi-
cient software Viterbi decoders. International Conference on High Performance Embeddethifectures and
Compilers (HIPEAC)volume 5952 of_ecture Notes in Computer Scienpages 353—-368. Springer, 2010.

Freceric de Mesmay, Arpad Rimmel, Yevgen Voronenko, and MarkiiscRel. Bandit-based optimization
on graphs with application to library performance tuning. International Conference on Machine Learning
(ICML), pages 729-736, 2009.

Fréderic de Mesmay, Yevgen Voronenko, and Markiisé&hel. Offline library adaptation using automatically
generated heuristics. International Parallel and Distributed Processing Symipos (IPDPS) 2010.

Franz Franchetti, Fecéric de Mesmay, Daniel McFarlin, and Markuggehel. Operator language: A program
generation framework for fast kernels. IFIP Working Conference on Domain Specific Languages (DS, WC
volume 5658 oL ecture Notes in Computer Scienpages 385-410. Springer, 2009.

Franz Franchetti and MarkudiBchel. A SIMD vectorizing compiler for digital signal pegsing algorithms. In
International Parallel and Distributed Processing Symipos (IPDPS) pages 20-26, 2002.

Franz Franchetti and MarkudiBchel. Generating SIMD vectorized permutationsinternational Conference
on Compiler Construction (CCyolume 4959 of_ecture Notes in Computer Scienpages 116-131. Springer,
2008.

Franz Franchetti, MarkusiiBchel, Yevgen Voronenko, Srinivas Chellappa, an& MsF. Moura. Discrete
Fourier transform on multicorelEEE Signal Processing Magazine, special issue on “Sigrmakc&ssing on
Platforms with Multiple Cores;’26(6):90-102, 2009.

Franz Franchetti, Yevgen Voronenko, and Markiisdhel. Formal loop merging for signal transforms. In
Programming Languages Design and Implementation (PLpdyjes 315-326, 2005.

Franz Franchetti, Yevgen Voronenko, and Markiisé¢hel. FFT program generation for shared memory: SMP
and multicore. IrSupercomputing (SC2006.

Franz Franchetti, Yevgen Voronenko, and Markiisd¢hel. A rewriting system for the vectorization of signal
transforms. InHigh Performance Computing for Computational Science (FER) volume 4395 ofLecture
Notes in Computer Sciengeages 363—-377. Springer, 2006.

M. Frigo. A fast Fourier transform compiler. IAroc. Programming Language Design and Implementation
(PLDI), pages 169-180, 1999.

Matteo Frigo and Steven G. Johnson. The design and imgaiéation of FFTW3.Proceedings of the IEEE
93(2), 2005. special issue on "Program Generation, Opétita, and Adaptation”.

J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimiér methodology for designing, modifying, and
implementing Fourier transform algorithms on various @estiures.IEEE Trans. Circuits and Systen#449—
500, 1990.

Daniel McFarlin, Franz Franchetti, JoM. F. Moura, and MarkusiBchel. High performance synthetic aperture
radar image formation on commodity architectures. SRIE Conference on Defense, Security, and Sensing
volume 7337, page 733708. Proceedings of SPIE, 2009.

Peter A. Milder, Franz Franchetti, James C. Hoe, andkM&amRischel. Formal datapath representation and
manipulation for implementing DSP transforms. Design Automation Conference (DAQJages 385390,
2008.

Grace Nordin, Peter A. Milder, James C. Hoe, and MarkiscRel. Automatic generation of customized discrete
Fourier transform IPs. IDesign Automation Conference (DA@pges 471474, 2005.

16

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

W. H. Press, B. P. Flannery, Teukolsky S. A., and VeitgriV. T. Numerical Recipes in C: The Art of Scientific
Computing Cambridge University Press, 2nd edition, 1992.

Markus Rischel and J@&sM. F. Moura. Algebraic signal processing theory: Coolexdy type algorithms for
DCTs and DSTsIEEE Transactions on Signal Processjia$(4):1502-1521, 2008.

Markus Rischel, Jos M. F. Moura, Jeremy Johnson, David Padua, Manuela Velos@mBSinger, Jianxin
Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, K&hgn, Robert W. Johnson, and Nicholas Rizzolo.
SPIRAL: Code generation for DSP transforr®soceedings of the IEEE, special issue on “Program Generati
Optimization, and Adaptation"93(2):232— 275, 2005.

Markus Rischel, Bryan Singer, Manuela Veloso, and&lds. F. Moura. Fast automatic generation of DSP
algorithms. Ininternational Conference on Computational Science (IC@8lume 2073 ofLecture Notes In
Computer Sciencgages 97-106. Springer, 2001.

Markus Rischel, Bryan Singer, Jianxin Xiong, &d. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
and Robert W. Johnson. SPIRAL: A generator for platformpaeld libraries of signal processing algorithms.
Journal of High Performance Computing and Applicationgaal issue on “Automatic Performance Tuning”
18(1):21-45, 2004.

Bryan Singer and Manuela Veloso. Learning to genegsgedignal processing implementationslriternational
Conference on Machine Learning (ICMlpages 529-536, 2001.

Bryan Singer and Manuela Veloso. Stochastic searciifpral processing algorithm optimization. Super-
computing (SG)page 22, 2001.

R. Tolimieri, M. An, and C. Lu. Algorithms for discrete Fourier transforms and convolatioSpringer, 2nd
edition, 1997.

C. Van Loan.Computational Framework of the Fast Fourier Transfor81AM, 1992.

Yevgen VoronenkoLibrary Generation for Linear TransformdhD thesis, Electrical and Computer Engineer-
ing, Carnegie Mellon University, 2008.

Yevgen Voronenko, FEcéric de Mesmay, and MarkusiBchel. Computer generation of general size linear
transform libraries. Innternational Symposium on Code Generation and Optinosa{CGO) pages 102-113,
20009.

Yevgen Voronenko and MarkudiBchel. Algebraic signal processing theory: Cooley-Tukgge algorithms for
real DFTs.IEEE Transactions on Signal Processjiy(1):205-222, 2009.

Jianxin Xiong, Jeremy Johnson, Robert W. Johnson, amddPadua. SPL: A language and compiler for DSP
algorithms. InProgramming Languages Design and Implementation (PLdyjes 298-308, 2001.

17

