
TITLE

Spiral

BYLINE

Markus P̈uschel, Franz Franchetti, and Yevgen Voronenko
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA
USA
{pueschel, franzf, yvoronen}@ece.cmu.edu

SYNONYMS

none

DEFINITION

Spiral is a program generation system (software that generates other software) for linear transforms and
an increasing list of other mathematical functions. The goal of Spiral is to automate the development and
porting of performance libraries. Linear transforms include the discrete Fourier transform (DFT), discrete
cosine transforms, convolution, and the discrete wavelet transform. Theinput to Spiral consists of a high-
level mathematical algorithm specification and selected architectural and microarchitectural parameters. The
output is performance-optimized code in a high-level language such as C,possibly augmented with vector
intrinsics and threading instructions.

DISCUSSION

Introduction

The advent of computers with multiple cores, SIMD (single-instruction multiple-data) vector instruction
sets, and deep memory hierarchies has a dramatic effect on the development of high performance software.
The problem is particularly apparent for functions that perform mathematical computations, which form the
core of most data or information processing applications. Namely, on a current workstation the performance
difference between a straightforward implementation of an optimal (minimizing operations count) algorithm
and the fastest possible implementation is typically 10–100 times.

As an example consider Fig. 1 which shows the performance (in gigafloatingpoint operations per sec-
ond) of four implementations of the discrete Fourier transform for varyinginput sizes on a quadcore Intel
Core i7. Each on uses a fast algorithm with roughly the same operations count. Yet the difference between
the slowest and fastest is 12–35 times. The bottom line is the code from Numerical Recipes [20]. The best
standard C code is about 5 times faster due to memory hierarchy optimizations and constant precomputation.
Proper use of explicit vector intrinsics instructions yields another 3 times. Explicit threading for the four
cores, properly done, yields another 3 times for large sizes.

The plot shows that the compiler cannot perform these optimizations as is truefor most mathemati-
cal functions. The reason is in both the compiler’s lack of domain-knowledge needed for the necessary
transformations and the large set of optimization choices with uncertain outcomethat the compiler cannot
assess. Hence the optimization task falls with the programmer and requires considerable skill. Further,

1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores)

Performance [Gflop/s] vs. input size

Best vector and parallel code

Best vector code

Best scalar code

Numerical recipes

Mul�ple threads: 3x

Vector instruc�ons: 3x

Memory hierarchy: 5x

Figure 1: Performance of different implementations of the discreteFourier transform (DFT) and reason for the per-
formance difference (figure from [10]).

the optimizations are usually platform-specific and hence have to be repeatedwith every new generation of
computers.

Spiral overcomes these problems by completely automating the implementation and optimization pro-
cess for the functions it supports. Complete automation means that Spiral produces source code for a given
function given only a very high-level representation of the algorithms forthis function and a high-level plat-
form description. After algorithm and platform knowledge are inserted, Spiral can generate various types of
code including for fixed and general input size, threaded or vectorized.

The approach taken by Spiral is based on the following key principles:

• Algorithm knowledge for a given mathematical function is represented in the form ofbreakdown rules
in adomain-specific language. Each rule represents a divide-and-conquer algorithm. The languageis
based on mathematics, is declarative, and platform independent. These properties enable the mapping
to various forms of parallelism from algorithm knowledge that is inserted onlyonce. It also enables the
derivation of the library structure for general input size implementations bycomputing the so-called
recursion step closure.

• Platform knowledge is organized intoparadigms. A paradigm is a feature of a platform that requires
structural optimization and possibly source code extensions. Examples include shared-memory par-
allelism or SIMD vector processing. Each paradigm consists of a set ofparameterized rewrite rules
andbase casesexpressed in the same language as the algorithm knowledge. The base cases constitute
a subset of the domain-specific language that maps well to a paradigm. The rewrite rules interact
with the breakdown rules to produce algorithms that are base cases, whichmeans they are structurally
optimized for the considered paradigm. Examples of parameters include the SIMD vector length or
the cacheline size. Paradigms are designed to be composable.

• Spiral usesempirical searchto automatically explore choices in a feedback loop. This is done by
generating candidate implementations and evaluating their performance. Eventhough theoretically
unsatisfying, search enables further optimization for intricate microarchitectural details that may be
unknown or are not well understood.

In summary, Spiral integrates techniques from mathematics, programming languages, compilers, automatic
performance tuning, and symbolic computation. The entire system Spiral combines aspects of a compiler,
generative programming, and an expert system.

2

The remainder of this section describes the framework underlying Spiral and the inner workings of the
actual system. The presentation focuses on linear transforms; extensions of Spiral beyond transforms are
briefly discussed in the end.

Algorithm Representation

Linear transforms. A linear transform is the function

x 7→ Mx,

whereM is a fixed matrix,x is the input vector, andy = Mx the output vector. Different transforms
correspond to different matricesM . For simplicity,M is referred to as transform in the following. Most
transformsM are squaren × n, which implies thatx andy are of lengthn. Most transforms exist for all
n = 1, 2,

The possibly most famous transform is the DFT defined by then× n matrix

DFTn =
[

ωk`
n

]

0≤k,`<n
, ωn = e−2πi/n, i =

√
−1.

Other examples include the discrete Hartley transform,

DHTn = [cos(2πk`/n) + sin(2πk`/n)]0≤k,`<n ,

the discrete cosine transform (DCT) of type 2,

DCT-2n =
[
cos(k(`+ 1

2)π/n)
]

0≤k,`<n
,

as well as other types of discrete cosine and sine transforms, the Walsh-Hadamard transform, the real DFT,
the discrete wavelet transform, the inverses and other variants of the preceding transforms, and finite im-
pulses response filters.

Fast transform algorithms: SPL. If M is n × n and has few or no zero entries, then a direct com-
putation ofy = Mx requiresO(n2) many operations. However, all the transforms mentioned above have
fast algorithms that reduce their complexity below that, typically toO(n log(n)). Every algorithm can be
expressed as a factorization of the transform matrixM into a product of sparse matrices. As an example
assumeM = M1M2M3M4, theny = Mx can be computed in four steps as

t = M4x, u = M3t, v = M2u, y = M1v.

If theMi are sufficiently sparse, this reduces the operations count.
The sparse matrices occurring in transform algorithms have structure thatcan be formally expressed

using basic matrices and matrix operators such as the direct sum and the tensor or Kronecker product. This
notation forms the basis for the language SPL (signal processing language) explained next.

Basic matrices include then × n identity matrixIn, diagonal matricesDn = diag(a0, . . . , an−1), the
2× 2 butterfly matrix

F2 =

[
1 1
1 −1

]

,

the stride permutation matrixLn
k , defined forn = km by the underlying permutation

`nk : im+ j 7→ jk + i, 0 ≤ i < k, 0 ≤ j < m, (1)

and several others.

3

〈spl〉 ::= 〈generic〉 | 〈basic〉 | 〈transform〉 |
〈spl〉 · · · · · 〈spl〉 | (product)
〈spl〉 ⊕ . . .⊕ 〈spl〉 | (direct sum)
〈spl〉 ⊗ · · · · ⊗〈spl〉 | (tensor product)
. . .

〈generic〉 ::= diag(a0, . . . , an−1) | . . .
〈basic〉 ::= In | Ln

k | F2 | . . .
〈transform〉 ::= DFTn | DHTn | DCT-2n | . . .

Table 1: A subset of SPL in Backus-Naur form;n, k are positive integers,ai are real or complex numbers.

Matrix operators include the matrix product, the direct sum

A⊕B =

[
A

B

]

,

and the tensor product
A⊗B = [ak,`B]0≤k,`<n , for A = [ak,`]0≤k,`<n .

Most important are the tensor products whereA orB are the identity:

In ⊗B =






B
. ..

B




 ,

and, for example,

[
a b
c d

]

⊗ I3 =

[
aI3 bI3
cI3 dI3

]

=











a b
a b

a b
c d

c d
c d











A (partial) description of SPL in Backus-Naur form is provided in Table 1.
Algorithms as SPL breakdown rules. Using SPL, the algorithm knowledge in Spiral is captured by

breakdown rules. A breakdown rule represents a one-step divide-and-conquer algorithm of a transform.
This means the transform is factorized into sparse matrices involving other, typically smaller, transforms.

The most famous example is the general-radix Cooley-Tukey fast Fouriertransform (FFT):

DFTn → (DFTk ⊗Im)Tn
m(Ik ⊗DFTm)Ln

k , n = km, (2)

whereTn
m is the diagonal matrix oftwiddle factors. Forn = 16 = 4 × 4, the factorization is visualized in

Fig. 2 together with the associated dataflow graph. The smallerDFT4’s are boxes of equal shades of gray.
To terminate the recursion, base cases are needed. For example, for two-powersn a size two base case

is sufficient:
DFT2 → F2. (3)

A few things are worth noting about this representation of transform algorithms:

• The representation (2) ispoint-free, i.e., the input vector is not present.

• The representation (2) is declarative.

• Since the rule (2) is a matrix equation, it can be manipulated using matrix identities. For example,
both sides can be inverted or transposed, to obtain an inverse or transposed transform algorithm.

4

DFT16 →

DFT4 I4 L4

16
T4

16
DFT4 I4

(a) Matrix factorization

xy

(b) Data-flow graph

Figure 2: Cooley-Tukey FFT (2) for16 = 4 × 4 as SPL rule and as (complex) data-flow graph (from right to left).
Some lines are bold to emphasize the strided access of theDFT4’s (figure from [10]).

DFTn = (DFTk ⊗Im)Tn
m(Ik ⊗DFTm)Ln

k , (Cooley-Tukey FFT) n = km

DFTn = V −1
n (DFTk ⊗Im)(Ik ⊗DFTm)Vn, (Prime-factor FFT) n = km, gcd(k,m) = 1

DFTn = W−1
n (I1⊕DFTp−1)En(I1⊕DFTp−1)Wn, (Rader FFT) n prime

DFTn = B′

nDm DFTm D′

m DFTm D′′

mBn, (Bluestein FFT) n > 2m

DFTn = P>

k,2m

(
DFT2m ⊕

(
Ik−1 ⊗i C2m rDFT2m,i/2k

))
(RDFT2k ⊗Im) , n = 2km

RDFTn = (P>

k,m ⊗ I2)
(
RDFT2m ⊕

(
Ik−1 ⊗i D2m rDFT2m,i/2k

))
(RDFT2k ⊗Im) , n = 2km

rDFTn,u = L2n
m

(
Ik ⊗i rDFT2m,(i+u)/k

)
(rDFT2k,u ⊗Im) , n = 2km

Table 2: A selection of breakdown rules representing algorithm knowledge for the DFT.rDFT is an auxiliary trans-
form and has two parameters.RDFT is a version of the real DFT.

• A breakdown rule may have degrees of freedom. An example is the choice of k in (2).

• A rule like (2) does not specify how to compute the smaller transforms. This implies that rules have
to be applied recursively until an algorithm is completely specified. Becauseof the that, and the
availability of different rules for the same transform, there is a large set ofchoices. In other words, the
relatively few existing rules yield a very large space of possible algorithms.This makes rules a very
efficient representation of algorithm knowledge. For example, forn = 2`, (2) alone yieldsΘ(5`/`3/2)
different algorithms, all with roughly the same operations count.

Spiral contains about 200 breakdown rules for about 40 transforms,some of which are auxiliary. The most
important rules for the DFT, without complete specification, are shown in Table 2. Note the occurrence of
auxiliary transforms.

Spiral Program Generation: Overview

The task performed by Spiral is to translate the algorithm knowledge (represented as in Table 2) for a given
transform into optimized source code (we assume C/C++) for a given platform.

The exact approach for generating the code depends on the type of code that has to be generated. The
most important distinctions are the following:

• Fixed input size versus general input size:If the input size is known (e.g., “DFT of size 4” as shown
in Fig. 3(a) and (b)) the algorithm to be used and other decisions can be determined at program
generation time and can be inlined. The result is a function containing only loops and basic blocks of
straightline code. If the input size is not known, it becomes an additional input and the implementation

5

(a) Fixed input size, unrolled (b) Fixed input size, looped (c) Generalinput size library, recursive

void dft_4(cpx *Y, cpx *X){
cpx s, t, t2, t3;
t = (X[0] + X[2]);
t2 = (X[0] - X[2]);
t3 = (X[1] + X[3]);
s = _I_*(X[1] - X[3]);
Y[0] = (t + t3);
Y[2] = (t - t3);
Y[1] = (t2 + s);
Y[3] = (t2 - s);

}

void dft_4(cpx *Y, cpx *X){
cpx T[4];
cpx W[2] = {1, _I_};
f o r(i n t i = 0; i <= 1; i++) {
cpx w = W[i];
T[2*i] = (X[i] + X[i+2]);
T[2*i+1] = w*(X[i] - X[i+2]);

}
f o r(i n t j = 0; j <= 1; j++) {
Y[j] = T[j] + T[j+2];
Y[2+j] = T[j] - T[j+2];

}
}

s t r u c t dft : public Env{
dft(i n t n); // constructor
void compute(cpx *Y, cpx *X);
i n t _rule, f, n;
char *_dat;
Env *ch1, *ch2;

};

void dft::compute(cpx *Y, cpx *X){
ch2->compute(Y, X, n, f, n, f);
ch1->compute(Y, Y, n, f, n, n/f);

}

Table 3: Code types.

becomes recursive (Fig. 3(c)). The actual algorithm, i.e., recursive computation is now chosen at
runtime once the input size is known.

• Straightline code versus loop code (fixed input size only):Straightline code (Fig. 3(a)) is only suitable
for small sizes, but can be faster, due to reduced overhead and increased opportunities for algebraic
simplifications. Loop code requires additional optimizations that merge redundant loops.

• Scalar code versus parallel code:Code that is parallelized for SIMD vector extensions or multiple
cores requires specific optimizations and the use of explicit vector intrinsics or threading directives.

The program generation process is explained in the next four sections corresponding to four different
code types of increasing difficulty. The order matches the historic development, since for each move to the
next code type at least one new idea had to be introduced. The types andmain ideas (in parentheses) are

• Fixed input size straightline code (SPL, breakdown rules, feedback loop)

• Fixed input size loop code (Σ-SPL, loop merging)

• Fixed input size parallel code (paradigms, tagged rewriting)

• General input size code (recursion step closure, parametrization)

Spiral generates code for fixed input size transforms (first three bullets) as shown in Fig. 3. The input is
the transform symbol (e.g., “DFT”) and the size (e.g., “128”). The output is a C function that computes the
transform (y = DFT128 x in this case). Depending on the code type, not all blocks in Fig. 3 may be used.

The block diagram for general input size is shown later.

Fixed Input Size: Straightline code

Given as input to Spiral is a transform symbol (“DFT”) and the input size. The program generation does
not need the parallelization and loop optimizations blocks. Further, noΣ-SPL is needed, which means the
SPL-to-Σ-SPL block and theΣ-SPL-to-code block are joined to one SPL-to-code block.

Algorithm generation. Spiral uses a rewrite system that recursively applies the breakdown rules (e.g.,
Table 2) to generate a complete SPL algorithm for the transform. As said before there are many choices due
to the choice of rule and the degree of freedom in some rules (e.g.,k in (2)).

SPL to C code and optimization. The SPL expression is then compiled into actual C code using the
internal SPL compiler, which recursively applies the translation rules sketched in Table 4.

6

Algorithm genera�on

SPL→Σ-SPL

loop merging

Σ-SPL→C code

Code op�miza�ons

Performance evalua�on

S
e

a
rc

h

Algorithm knowledge

(breakdown rules)

Pla#orm knowledge

(paradigms)

Transform (“DFT”)

input size (“128”)

C implementa�on:
DFT_128(*y, *x) { … }

algorithm (SPL)

algorithm (Σ-SPL)

source code (C)

paralleliza�on
loop

op�miza�ons

Spiral
(fixed input size)

Figure 3: Spiral program generator for fixed input size functions. For straightline code, noΣ-SPL is needed and SPL
is translated directly into C code.

SPL expressionS Pseudo code fory = Sx

AnBn
<code for: t = Bx>

<code for: y = At>

Im ⊗An
for (i=0; i<m; i++)

<code for: y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1])>

Am ⊗ In
for (i=0; i<n; i++)

<code for: y[i:n:i+m*n-n] = A(x[i:n:i+m*n-n])>

Dn
for (i=0; i<n; i++)

y[i] = D[i]*x[i];

Lkm
k

for (i=0; i<k; i++)

for (j=0; j<m; j++)

y[i*m+j] = x[j*k+i];

F2
y[0] = x[0] + x[1];

y[1] = x[0] - x[1];

Table 4: Translation of SPL to code. The subscript ofA,B specifies the (square) matrix size.x[b:s:e] denotes
(Matlab-style) the subvector ofx starting atb, ending ate, extracted at strides. D is a diagonal matrix, whose
diagonal elements are stored in an array with the same name.

7

xy

(a) Two stages

xy

(b) One stage

Figure 4: The loop merging problem for(I4 ⊗ F2)L
8

4
.

All loops are unrolled and code level optimizations are applied. These include array scalarization,
constant propagation, and algebraic simplification.

Performance evaluation. The runtime of the resulting code is measured and fed into the search block
that controls the algorithm generation.

Search. The search drives a feedback loop that generates and evaluates different algorithms to find
the fastest. Dynamic programming has proven to work best in many cases, but other techniques including
evolutionary search or bandit-based Monte Carlo exploration have beenstudied.

Fixed Input Size: Loop code

The approach to generating straightline code can also be used to generateloop code (Table 4 yields loops),
but the code will be inefficient.

The problem: Loop merging. To illustrate the problem consider the SPL expression

(I4 ⊗ F2)L
8
4.

Application of Table 4 yields the code visualized in Fig. 4(a):
// Input: double x[8], output: y[8]
double t[8];
f o r(i n t i=0; i<4; i++) {

f o r (i n t j=0; j<2; j++) {
t[i*2+j] = x[j*4+i];

}
}
f o r (i n t j=0; j<4; j++) {

y[2*j] = t[2*j] + t[2*j+1];
y[2*j+1] = t[2*j] - t[2*j+1];

}

This is known to be suboptimal since the permutation (first loop) can be fusedwith the subsequent compu-
tation loop, thus eliminating one pass through the data (Fig. 4(b)):

// Input: double x[8], output: y[8]
f o r (i n t j=0; j<4; j++) {

y[2*j] = x[j] + x[j+4];
y[2*j+1] = x[j] - x[j+4];

}

This transformation cannot be expressed in SPL and, in the general case, is difficult to perform on C code.
To solve this problem,Σ-SPL was developed, an extension of SPL that can express loops. Theloop merging
is then performed by rewritingΣ-SPL expressions.

Σ-SPL. Σ-SPL adds four basic components to SPL:

1. index mapping functions,

2. scalar functions,

8

Σ-SPL expressionS Code fory = Sx

G(fn→N)
for(i=0; i<n; i++)

y[i] = x[f(i)];

S(fn→N)
for(i=0; i<n; i++)

y[f(i)] = x[i];

P (fn)
for(i=0; i<n; i++)

y[i] = x[f(i)];

diag
(
fn→C

) for(i=0; i<n; i++)

y[i] = f(i)*x[i];

∑k−1
i=0 Ai

for(i=0; i<k; i++)

<code for: y = A_i * x>

Table 5: Translation ofΣ-SPL to code.

3. parametrized matrices,

4. iterative sum
∑

.

These are defined next.
An integer interval is denoted withIn = {0, . . . , n− 1}, and an index mapping functionf with domain

In and rangeIN is denoted with
fn→N : In → IN ; i 7→ f(i).

An example is the stride function

hn→N
b,s : In → IN ; i 7→ b+ is, for s|N. (4)

Permutations are written asfn→n = fn such as the stride permutation in (1).
A scalar functionf : In → C; i 7→ f(i) maps an integer interval to the domain of complex or real

numbers, and is abbreviated byfn→C. Scalar functions are used to describe diagonal matrices.
Σ-SPL adds four types of parameterized matrices to SPL (gather, scatter, permutation, diagonal):

G(fn→N), S(fn→N), P (fn), and diag
(
fn→C

)
.

Their translation into actual code (which also defines the matrices) is shown inTable 5. For example,

G(hn→N
0,1) =

[1
...

1

]

, S(hn→N
0,1) = G(h0,1)

>.

Finally,Σ-SPL adds the iterative matrix sum

n−1∑

i=0

Ai.

to represent loops. TheAi are restricted such that no twoAi have a non-zero entry in the same row.
The following example shows how⊗ is converted into a sum.A is assumed to ben × n and domain

and range in the occurring stride functions are omitted for simplicity.

Ik ⊗A =

[
A

...
A

]

=

[
A

]

+ · · ·+
[

A

]

= S(h0,1)AG(h0,1) + · · ·+ S(h(k−1)n,1)AG(h(k−1)n,1)

=

k−1∑

i=0

S(hin,1)AG(hin,1)

9

xy

cache block

(a) I4 ⊗ F2

xy

cache block

(b) (I4 ⊗ F2)L4

Figure 5: Mapping SPL constructs to four threads. Each thread computes oneF2. Both computations are data parallel,
but (a) produces no false sharing whereas (b) does.

Intuitively, the conversion toΣ-SPL makes the loop structure ofy = (Ik ⊗A)x explicit. In each iterationi,
G(·) andS(·) specify how to read and write a portion of the input and output, respectively, to be processed
byA.

Loop merging using Σ-SPL and rewriting. UsingΣ-SPL, the loop merging problem identified before
in the example(I4 ⊗ F2)L

8
4 is solved by the loop optimization block in Fig. 3 as follows:

(I4 ⊗ F2)L
8
4 →

(
3∑

i=0

S(h2i, 1)F2G(h2i, 1)

)

P (`84)

→
3∑

i=0

(

S(h2i, 1)F2G(`84 ◦ h2i, 1)
)

→
3∑

i=0

(

S(h2i, 1)F2G(hi, 2)
)

The first step translates SPL intoΣ-SPL. The second step performs the loop merging by composing the
permutatioǹ 8

4 with the index functions of the subsequent gathers. The third step simplifies the resulting
index functions. After that, actual C code is generated using Table 5.

Besides the added loop optimizations block in Fig. 3, the program generation for loop code operates
iteratively exactly as for straightline code.

Fixed input size: Parallel code

As was illustrated with Fig. 1, for compute function compilers usually fail to optimally(or at all) exploit the
parallelism offered by a platform. Hence the task falls with the programmer, who has to leave the standard C
programming model and insert explicit threading or OpenMP loops for shared memory parallelism and so-
called intrinsics for vector instruction sets. However, doing so in a straightforward way does not necessarily
yield good performance.

The problem: Algorithm structure. To illustrate the problem consider a target platform with four
cores that share a cache with a cache block size of two complex numbers.

The first goal is to obtain parallel code with four threads forI4 ⊗ F2 visualized in Fig. 5(a). The
computation is data parallel; hence, the loop suggested in Table 4 can be replaced, for example, by an
OpenMP parallel loop. Note that each processor “owns” as working set exactly one cache block, hence the
parallelization will be efficient.

Now consider again the SPL expression(I4 ⊗ F2)L
8
4 visualized in Fig. 5(b). The computation is again

data parallel, but the access pattern has changed such that always two processors access the same cache
block. This produces false sharing, which triggers the cache coherency protocol and reduces performance.

10

〈smp〉 ::= 〈generic〉 | 〈basic〉 |
〈smp〉 · · · · · 〈smp〉 | (product)
〈smp〉 ⊕ . . .⊕ 〈smp〉 | (direct sum)
In ⊗ 〈smp〉 | (tensor product)
. . .

〈generic〉 ::= diag(a0, . . . , an−1) | . . .
〈basic〉 ::= Ip ⊗An | P ⊗ Iµ | . . .

Table 6: smp(p, µ) base cases in Backus-Naur form;n is a positive integer,ai are real or complex numbers.

The problem is obviously the permutationL8
4. Since the rules (e.g., those in Table 2) contain many, and vari-

ous, permutations, a straightforward mapping to parallel code will yield hugely suboptimal performance. To
solve this problem inside Spiral, another rewrite system is introduced to restructure algorithms before map-
ping to parallel code. The restructuring will be different for differentforms of parallelism, called paradigms.

Paradigms and tagged rewriting. A paradigmin Spiral is a feature of the target platform that requires
structural optimization. Typically, a paradigm is a form of parallelism. Examplesinclude shared memory
parallelism (SMP) and SIMD parallelism. A paradigm may be parameterized, e.g., by the vector length
ν for SIMD parallelism. In Spiral, a paradigm manifests itself by another rewritesystem provided by the
additional parallelism block in Fig. 3 (and backend extensions in theΣ-SPL to C code block to produce the
actual code).

The goal of the new rewrite system is to structurally optimize a given SPL expression into a form that
can be efficiently mapped to a given paradigm. The rewrite system is built from the three main components:

• Tagsencode the paradigm and relevant parameters. Examples include the tags “vec(ν)” for SIMD
vector extensions and the tag “smp(p, µ)” for SMP. The meaning of the parameters is explained later.

• Base casesare SPL constructs that can be mapped well to a given paradigm. As illustrated above, one
example is anyIp ⊗An for p-way SMP.

• Tagged rewrite rulesare mathematical identities that translate general SPL expressions towards base
cases. An example is the rule (assumingp|n)

Am ⊗ In
︸ ︷︷ ︸

smp(p,µ)

→ Lmn
m
︸︷︷︸

smp(p,µ)

(
Ip ⊗ (In/p ⊗Am)

)
Lmn
n
︸︷︷︸

smp(p,µ)

.

The rule extracts thep-way parallel loop (base case)Ip ⊗ (In/p ⊗ Am) from Am ⊗ In. The stride
permutationsLmn

m andLmn
n are handled by further rewriting.

Example: SMP. For SMP, the tag smp(p, µ) contains the number of processorsp and the cache block
sizeµ. Base cases includeIp ⊗ An andP ⊗ Iµ, whereP is any permutation.P ⊗ Iµ moves data in blocks
of sizeµ, hence false sharing is avoided. From these, other base cases can bebuilt recursively as captured
by the sketched grammar in Table 6.

Some SMP rewrite rules are shown in Table 7. Note that the rewriting is not unique, and not every
sequence of rules terminates. Once all tags disappear, the rewriting terminates.

Example: SIMD. For SIMD, the tag vec(ν) contains only the vector lengthν. The most important base
case isAn ⊗ Iν , which can mapped to vector code by generating scalar code forAn and replacing every
operation by its correspondingν-way vector operation. Other bases cases includeL2ν

ν , L2ν
2 , andLν2

ν , which
are generated automatically from the instruction set [9]. Similar to Table 6, the entire set of vector base
cases is specified by a grammar recursively built from the above specialconstructs.

Parallelization by rewriting. In Spiral, parallelization adds the new parallelization block in Fig. 3. The
parallelization rules are applied interleaved with the breakdown rules to generate SPL algorithms that have
the right structure for the desired paradigm. For example, for the DFT it mayoperate as follows:

11

AB
︸︷︷︸

smp(p,µ)

→ A
︸︷︷︸

smp(p,µ)

B
︸︷︷︸

smp(p,µ)

Am ⊗ In
︸ ︷︷ ︸

smp(p,µ)

→
(
L

mp
m ⊗ In/p

)(
Ip ⊗ (Am ⊗ In/p)

)(
L

mp
p ⊗ In/p

)

︸ ︷︷ ︸

smp(p,µ)

L
mn
m

︸︷︷︸

smp(p,µ)

→







(
Ip ⊗ L

mn/p

m/p

)

︸ ︷︷ ︸

smp(p,µ)

(
L

pn
p ⊗ Im/p

)

︸ ︷︷ ︸

smp(p,µ)
(
L

pm
m ⊗ In/p

)

︸ ︷︷ ︸

smp(p,µ)

(
Ip ⊗ L

mn/p
m

)

︸ ︷︷ ︸

smp(p,µ)

Im ⊗An
︸ ︷︷ ︸

smp(p,µ)

→ Ip ⊗
(
Im/p ⊗An

)

(P ⊗ In)
︸ ︷︷ ︸

smp(p,µ)

→
(
P ⊗ In/µ)⊗ Iµ

Table 7: Examples of smp(p, µ) rewrite rules.

DFTmn
︸ ︷︷ ︸

smp(p,µ)

→
(
(DFTm⊗In)T

mn
n (Im ⊗DFTn)L

mn
m

)

︸ ︷︷ ︸

smp(p,µ)
. . .

→
(
DFTm⊗In

)

︸ ︷︷ ︸

smp(p,µ)

Tmn
n
︸︷︷︸

smp(p,µ)

(
Im ⊗DFTn

)

︸ ︷︷ ︸

smp(p,µ)

Lnm
m
︸︷︷︸

smp(p,µ)
. . .

→
(
(Lmp

m ⊗ In/pµ)⊗ Iµ
)(
Ip ⊗ (DFTm⊗In/p)

)(
(Lmp

p ⊗ In/pµ)⊗ Iµ
)

Tmn
m

(

Ip ⊗ (Im/p ⊗DFTn)
)(
Ip ⊗ L

mn/p
m/p

)(
(Lpn

p ⊗ Im/pµ)⊗ Iµ
)

First, Spiral applies the breakdown rule (2). Then the parallelization rulestransform the resulting SPL
expression in several steps. Note how the final expression has only access patterns (permutations) of the
formP ⊗ Iµ and all computations are in the formIp⊗A (and the diagonalTmn

m). The smaller DFTs can be
expanded in different ways, e.g., by rewriting for SIMD. Further choices are used for search.

The remaining operation of Spiral includingΣ-SPL conversion and search proceeds as before.

General Input Size

An implementation that can compute a transform for arbitrary input size is fundamentally different from one
for fixed input size (compare Fig. 3(b) and (c)). If the input sizen is fixed, e.g.,n = 4, the computation is
(x,y) -> dft_4(y,x)

and all decisions such as the choice of recursion until base cases are reached can be made at implementation
time. In an equivalent implementation (called library) for general input sizen,
(n,x,y) -> dft(n,y,x)

the recursion is fixed only once the input size is known. Formally, the computation now becomes
n -> ((x,y) -> dft(n,y,x))

which is an example of function currying. A C++ implementation is sketched in Fig.3(c), where the two
steps would take the form
dft * f = new dft(n); // initialization
f->compute(y, x); // computation

12

The first step determines the recursion to be taken using search or heuristics and precomputes the twiddle
factors needed for the computation. The second step performs the actualcomputation. The underlying
assumption is that the cost of the first step is amortized by a sufficient numberof computations. This model
is used by FFTW [15] and the libraries generated by Spiral.

To support the above model, the implementation needs recursive functions.The major problem is that
the optimizations introduced before operate in nontrivial ways across function boundaries, thus creating
more functions than expected. The challenge is to derive these functions automatically.

The problem: Loop merging across function boundaries. To illustrate the problem consider the
Cooley-Tukey FFT (2). A direct recursive implementation would consist of four steps corresponding to the
four matrix factors in (2). Two of the steps would call smaller DFTs:
void dft(i n t n, cpx *y, cpx *x) {

i n t k = choose_factor(n);
i n t m = n/k;
cpx *t1 = Permute x with L(n,k);
// t2 = (I_k tensor DFT_m) * t1
f o r(i n t i=0; i<k; ++i)

dft(m, t2 + m*i, t1 + m*i);
// t3 = Tˆn_m * t2, f() computes diagonal entries of T
f o r(i n t i=0; i<n; ++i)

t3[i] = f(i) * t2[i];
// y = (DFT_k tensor I_m) * t3, cannot call
// dft() recursively, need strided I/O
f o r(i n t i=0; i<m; ++i)

dft_stride(k, m, y + i, t3 + i);
}
// to be implemented
void dft_stride(i n t n, i n t stride, cpx *Y, cpx *X);

Note how even this simple implementation is not self-contained. A new functiondft stride is
needed that accesses the input in a stride and produces the output at thesame stride (see the data flow in
Fig. 2).

However, as explained before, loops should be merged where possible. For fixed size code, Spiral would
merge the first loop with the second, and the third loop with the fourth usingΣ-SPL rewriting. The same
can be done in the general size recursive implementation but the merging crosses function boundaries:
void dft(i n t n, cpx *y, cpx *x) {

i n t k = choose_factor(n);
// t1 = (I_k tensor DFT_m)L(n,k) * x
f o r(i n t i=0; i < k; ++i)

dft_iostride(m, k, 1, t1 + m*i, x + m*i);
// y = (DFT_k tensor I_m) Tˆn_m
// diagonal entries of T are now precomputed in precomp_f[]
f o r(i n t i=0; i < m; ++i)

dft_scaled(k, m, precomp_f[i], y + i, t1 + i);
}

// to be implemented
void dft_iostride(i n t n, i n t istride, i n t ostride, cpx *y, cpx *x);
void dft_scaled(i n t n, i n t stride, cpx *d, cpx *y, cpx *x);

Now there are two additional functions:dft iostride reads at a stride and writes at a different stride,
dft scaled first scales the input and then performs a DFT at a stride.

So at least three functions are needed with different signatures. However, the two additional functions are
also implemented recursively, possibly spawning new functions. Calling these functionsrecursion steps, the
main challenge is to automatically derive the complete set of recursion steps needed, called the “recursion
step closure.” Further, for each recursion step in the closure, the signature has to be derived.

Recursion step closure by Σ-SPL rewriting. Spiral derives the recursion step closure usingΣ-SPL and
the same rewriting system that is used for loop merging. For example, the two additional recursion steps
in the optimized implementation above are automatically obtained from (2) as follows.Recursion steps are

13

Spiral
(general input size)

Recursion step closure
Pla!orm knowledge

(paradigms)

Algorithm knowledge

(breakdown rules)

C library

recursion steps and recursions (Σ-SPL)
paralleliza!on

Hot/cold par""oning

Σ-SPL→C code

Base case genera"on

(fixed input size Spiral)

base case

algorithms (Σ-SPL)

Figure 6: Spiral program generator for general input size libraries.

marked by overbraces.

︷ ︸︸ ︷

DFTn → (
︷ ︸︸ ︷

DFTn/k ⊗Ik)T
n
k (In/k ⊗

︷ ︸︸ ︷

DFTk)L
n
n/k

→
(

k−1∑

i=0

S(hi,k)
︷ ︸︸ ︷

DFTn/k G(hi,k)

)

diag
(
f
)





n/k−1
∑

j=0

S(hjk,1)
︷ ︸︸ ︷

DFTk G(hjk,1)



P (`nn/k)

→
k−1∑

i=0

S(hi,k)
︷ ︸︸ ︷

DFTn/k diag
(
f ◦ hi,k

)
G(hi,k)

n/k−1
∑

j=0

S(hjk,1)
︷ ︸︸ ︷

DFTk G(hj,n/k)

→
k−1∑

i=0

︷ ︸︸ ︷

S(hi,k)DFTn/k diag
(
f ◦ hi,k

)
G(hi,k)

n/k−1
∑

j=0

︷ ︸︸ ︷

S(hjk,1)DFTk G(hj,n/k) (5)

The first step applies the breakdown rule (2). The second step converts toΣ-SPL. The third step performs
loop merging as explained before. The fourth step expands the braces toinclude the context. The two
expression under the braces correspond to the two functionsdft iostride anddft scaled. The
process is now repeated for the expression under the braces until closure is reached. In this example, only one
additional function is needed, i.e., the recursion step closure consists of four mutually recursive functions.
The derivation of the recursion steps also yields aΣ-SPL specification of the actual recursion, i.e., their
implementation by a recursive function (e.g., (5) forDFTn).

For the best performance the braces may be extended to also include the loop represented by the iterative
sum. Moving the loop into the function enables better C/C++ compiler optimizations.

If the implementation is vectorized or parallelized, the initial breakdown rules are first rewritten as
explained before and then the closure is computed. The size of the closureis typically increased in this case.

Program generation for general input size: Overview. The overall process is visualized in Fig. 6. The
input to Spiral is now a (sufficient) set of breakdown rules for a giventransform or transforms. The rules are
parallelized if desired using the appropriate paradigms; then the recursionstep closure is computed, which
also yields the actual recursions.

The resulting recursion steps need base cases for termination. These are generated using the algorithm
generation block from the fixed input size Spiral (Fig. 3) for a range ofsmall sizes (e.g.,n ≤ 32) to improve
performance. These, the recursion steps, and the recursions are fed into the final block to generate the final

14

library. Among other things the block performs thehot/cold partitioningthat determines which parameters
in a recursion step are precomputed during initialization and which become parameters of the actual compute
function. Finally, the actual code is generated (which now includes recursive functions) and integrated into
a common infrastructure to obtain a complete library.

Many details are omitted in this description and are provided in [30, 29].

Extensions

A major question is whether the approach taken by Spiral can be extended beyond the domain of linear
transforms, while maintaining both the basic principles outlined in the introduction and the ability to auto-
matically perform the necessary transformations and reasoning. First progress in this direction was made in
[7] with the introduction of the operator language (OL). OL generalizes SPL by considering operators that
may be nonlinear and may have more then one vector input or output. Important constructs such as the tensor
product are generalized to operators. First results on program generation for functions such as radar imag-
ing, Viterbi decoding, matrix-multiplication, and the physical layer functions of wireless communication
protocols have already been developed.

RELATED ENTRIES

FFTW
ATLAS
FFT

BIBLIOGRAPHIC NOTES AND FURTHER READING

Spiral is based on early ideas on using tensor products to map FFT algorithmsto parallel supercomputers
[16]. The first paper describing SPL and the SPL compiler is [32]. See also [14] for basic block optimizations
for transforms. The first complete basic Spiral system including SPL algorithm generation and search was
presented in [23] with a more extensive treatment in [24] and the probably best overview paper [22], which
fully develops SPL for a variety of transforms. The path to complete automationin the transform domain
continued withΣ-SPL and loop merging [11], the introduction of rewriting systems for SIMD vectorization
[8, 13] and base case generation [9], SMP parallelization [12], and distributed memory parallelization in
[2, 3]. The final step to generating general size, parallel, adaptive libraries was made in [30, 29]. The
generated libraries are modeled after FFTW [15], which is written by hand but uses generated basic blocks
[14].

The most important extensions of Spiral are the following. Extensions to generate Verilog for field-
programmable gate-arrays (FPGAs) are in [19, 18]. Search techniques other than dynamic programming are
developed in [26, 5] The use of learning to avoid search was studied in [25, 6]. Finally, [7, 4, 17] make the
first steps towards extending Spiral beyond the transform domain including the first OL description. The
Spiral project website with more information and all publications is located at [1].

A good introduction to FFTs using tensor products are the books [27, 28]. A comprehensive overview
of algorithms for Fourier/cosine/sine transforms is given in [21, 31]. A good introduction to mapping FFTs
to multicore platforms is [10].

References

[1] Spiral project website.www.spiral.net.

15

[2] Andreas Bonelli, Franz Franchetti, Juergen Lorenz, Markus P̈uschel, and Christoph W. Ueberhuber. Automatic
performance optimization of the discrete Fourier transform on distributed memory computers. InInternational
Symposium on Parallel and Distributed Processing and Application (ISPA), volume 4330 ofLecture Notes In
Computer Science, pages 818–832. Springer, 2006.

[3] Srinivas Chellappa, Franz Franchetti, and Markus Püschel. High performance linear transform program genera-
tion for the Cell BE. InHigh Performance Embedded Computing (HPEC), 2009.

[4] Fréd́eric de Mesmay, Srinivas Chellappa, Franz Franchetti, and Markus P̈uschel. Computer generation of effi-
cient software Viterbi decoders. InInternational Conference on High Performance Embedded Architectures and
Compilers (HiPEAC), volume 5952 ofLecture Notes in Computer Science, pages 353–368. Springer, 2010.

[5] Fréd́eric de Mesmay, Arpad Rimmel, Yevgen Voronenko, and Markus Püschel. Bandit-based optimization
on graphs with application to library performance tuning. In International Conference on Machine Learning
(ICML), pages 729–736, 2009.

[6] Fréd́eric de Mesmay, Yevgen Voronenko, and Markus Püschel. Offline library adaptation using automatically
generated heuristics. InInternational Parallel and Distributed Processing Symposium (IPDPS), 2010.

[7] Franz Franchetti, Fréd́eric de Mesmay, Daniel McFarlin, and Markus Püschel. Operator language: A program
generation framework for fast kernels. InIFIP Working Conference on Domain Specific Languages (DSL WC),
volume 5658 ofLecture Notes in Computer Science, pages 385–410. Springer, 2009.

[8] Franz Franchetti and Markus Püschel. A SIMD vectorizing compiler for digital signal processing algorithms. In
International Parallel and Distributed Processing Symposium (IPDPS), pages 20–26, 2002.

[9] Franz Franchetti and Markus Püschel. Generating SIMD vectorized permutations. InInternational Conference
on Compiler Construction (CC), volume 4959 ofLecture Notes in Computer Science, pages 116–131. Springer,
2008.

[10] Franz Franchetti, Markus Püschel, Yevgen Voronenko, Srinivas Chellappa, and José M. F. Moura. Discrete
Fourier transform on multicore.IEEE Signal Processing Magazine, special issue on “Signal Processing on
Platforms with Multiple Cores”, 26(6):90–102, 2009.

[11] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. Formal loop merging for signal transforms. In
Programming Languages Design and Implementation (PLDI), pages 315–326, 2005.

[12] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. FFT program generation for shared memory: SMP
and multicore. InSupercomputing (SC), 2006.

[13] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. A rewriting system for the vectorization of signal
transforms. InHigh Performance Computing for Computational Science (VECPAR), volume 4395 ofLecture
Notes in Computer Science, pages 363–377. Springer, 2006.

[14] M. Frigo. A fast Fourier transform compiler. InProc. Programming Language Design and Implementation
(PLDI), pages 169–180, 1999.

[15] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.Proceedings of the IEEE,
93(2), 2005. special issue on ”Program Generation, Optimization, and Adaptation”.

[16] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri. A methodology for designing, modifying, and
implementing Fourier transform algorithms on various architectures.IEEE Trans. Circuits and Systems, 9:449–
500, 1990.

[17] Daniel McFarlin, Franz Franchetti, José M. F. Moura, and Markus P̈uschel. High performance synthetic aperture
radar image formation on commodity architectures. InSPIE Conference on Defense, Security, and Sensing,
volume 7337, page 733708. Proceedings of SPIE, 2009.

[18] Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus P̈uschel. Formal datapath representation and
manipulation for implementing DSP transforms. InDesign Automation Conference (DAC), pages 385–390,
2008.

[19] Grace Nordin, Peter A. Milder, James C. Hoe, and Markus Püschel. Automatic generation of customized discrete
Fourier transform IPs. InDesign Automation Conference (DAC), pages 471–474, 2005.

16

[20] W. H. Press, B. P. Flannery, Teukolsky S. A., and Vetterling W. T. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 2nd edition, 1992.

[21] Markus P̈uschel and José M. F. Moura. Algebraic signal processing theory: Cooley-Tukey type algorithms for
DCTs and DSTs.IEEE Transactions on Signal Processing, 56(4):1502–1521, 2008.

[22] Markus P̈uschel, Jośe M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin
Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, KangChen, Robert W. Johnson, and Nicholas Rizzolo.
SPIRAL: Code generation for DSP transforms.Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, 93(2):232– 275, 2005.

[23] Markus P̈uschel, Bryan Singer, Manuela Veloso, and José M. F. Moura. Fast automatic generation of DSP
algorithms. InInternational Conference on Computational Science (ICCS), volume 2073 ofLecture Notes In
Computer Science, pages 97–106. Springer, 2001.

[24] Markus P̈uschel, Bryan Singer, Jianxin Xiong, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
and Robert W. Johnson. SPIRAL: A generator for platform-adapted libraries of signal processing algorithms.
Journal of High Performance Computing and Applications, special issue on “Automatic Performance Tuning”,
18(1):21–45, 2004.

[25] Bryan Singer and Manuela Veloso. Learning to generate fast signal processing implementations. InInternational
Conference on Machine Learning (ICML), pages 529–536, 2001.

[26] Bryan Singer and Manuela Veloso. Stochastic search forsignal processing algorithm optimization. InSuper-
computing (SC), page 22, 2001.

[27] R. Tolimieri, M. An, and C. Lu. Algorithms for discrete Fourier transforms and convolution. Springer, 2nd
edition, 1997.

[28] C. Van Loan.Computational Framework of the Fast Fourier Transform. SIAM, 1992.

[29] Yevgen Voronenko.Library Generation for Linear Transforms. PhD thesis, Electrical and Computer Engineer-
ing, Carnegie Mellon University, 2008.

[30] Yevgen Voronenko, Fréd́eric de Mesmay, and Markus Püschel. Computer generation of general size linear
transform libraries. InInternational Symposium on Code Generation and Optimization (CGO), pages 102–113,
2009.

[31] Yevgen Voronenko and Markus Püschel. Algebraic signal processing theory: Cooley-Tukeytype algorithms for
real DFTs.IEEE Transactions on Signal Processing, 57(1):205–222, 2009.

[32] Jianxin Xiong, Jeremy Johnson, Robert W. Johnson, and David Padua. SPL: A language and compiler for DSP
algorithms. InProgramming Languages Design and Implementation (PLDI), pages 298–308, 2001.

17

