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Abstract. This paper presents a program generator for fast software
Viterbi decoders for arbitrary convolutional codes. The input to the gen-
erator is a specification of the code and a single-instruction multiple-data
(SIMD) vector length. The output is an optimized C implementation of
the decoder that uses explicit Intel SSE vector instructions. At the heart
of the generator is a small domain-specific language called VL to express
the structure of the forward pass. Vectorization is done by rewriting VL
expressions, which a compiler then translates into actual code in addition
to performing further optimizations specific to the vector instruction set.
Benchmarks show that the generated decoders match the performance
of available expert hand-tuned implementations, while spanning the en-
tire space of convolutional codes. An online interface to the generator is
provided at www.spiral.net.

Key words: Library generation, high performance software, vectoriza-
tion, domain-specific language, Viterbi algorithm

1 Introduction

The Viterbi algorithm is a maximum likelihood sequence decoder introduced
by Andrew Viterbi [1], and finds wide usage in communications, speech recog-
nition, and statistical parsing. In the past, the high throughput requirements
for decoding demanded dedicated hardware implementations [2]. However, the
dramatically growing processor performance has started to change this situa-
tion: intensive processing is now often done in software for reasons of cost and
flexibility. A prominent example is software defined radio [3].

Unfortunately, developing a generic high-throughput software Viterbi de-
coder is difficult. The reason is that the best performance can only be achieved
by using vector instructions (such as Intel’s Streaming SIMD Extensions, SSE),
which most modern processors provide. To take advantage of these instructions,
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the programmer has to explicitly issue them using an intrinsics interface or di-
rectly write assembly code. Achieving performance gains with these instructions
first requires proper restructuring of the dataflow of the decoder with respect
to the vector length. Then, the programmer must deal with the intricacies of
the instruction sets as the available instructions differ between platform vendors
and vector lengths. Finally, because the total vector length in bits is fixed, there
is a degree of freedom arising from the tradeoff between speed and precision
(e.g., 4-way vectorization implies 32 bits per element while the faster 16-way
vectorization implies only 8 bits per element).

Because of the difficulty in handling these issues, existing approaches are
based on manually writing specific assembly routines for each decoder (e.g.,
[4]), which involves considerable effort given the large set of different codes and
platforms used in real-world applications.

Contribution of this paper. In this paper, we present a method to auto-
matically generate fast implementations of software Viterbi decoders. Our gen-
erator takes as input, a specification of the convolutional code and the vector
length to be used. The output is a C program for the corresponding Viterbi de-
coder implemented using SSE. Note that the methods presented in this paper are
generic enough to apply to other instruction sets. Only the performance critical
forward pass of the decoder is actually generated – the infrastructure and the
traceback stages are reused from the high-performance decoders by Karn [4].

Our generator consists of three components:

1. A domain specific language, called VL, to describe the forward pass at a
high level of abstraction. The language is a generalization of the Kronecker
product formalism used to describe fast Fourier transforms [5].

2. A VL rewriting system that restructures the forward pass depending on the
target vector length.

3. A compiler that takes VL as input, outputs C code including SSE intrinsics,
and performs various low level optimizations.

As we will show, our generator can handle arbitrary convolutional codes, ar-
bitrary vector length, and produces decoders with excellent performance. It is
implemented as part of the Spiral program generation system [6]. An online
interface is provided at www.spiral.net/software/viterbi.html.

Related work. Our approach is similar to the one taken by Spiral to gener-
ate programs for linear transforms [6]. Spiral uses the domain-specific language
SPL [7] to explore alternative algorithms for a given transform, and vectorize
and parallelize fast Fourier transform algorithms (FFTs) [8, 9]. While our VL is
closely related to SPL due to the inherent similarities between Viterbi decod-
ing and FFTs (which were already noted in [10, 11]), a significant difference with
previous work is that the selection between alternative algorithms is not present.
However, the wide range of convolutional codes that one would want to generate
still offers a compelling case for on-demand generation of high-performance code.

VL is a subset of the Operator Language (OL) that aims at generalizing SPL
to capture more general computations. [12] presents the general OL framework
while this this paper focuses on issues specific to Viterbi decoding.



To achieve high performance, other decoding algorithms for convolutional
codes also exist. Examples include the lazy Viterbi (efficient for long constraint
lengths) and the Fano algorithm (efficient for good signal-to-noise ratios) [13,
14]. This paper only considers “standard” Viterbi decoders.

Organization of this paper. In Section 2 we provide background on convo-
lutional codes and the Viterbi decoding algorithm. In Section 3, we introduce the
language VL to describe the forward pass of Viterbi decoding and explain how
to generate scalar code. Vectorization through VL rewriting is covered in Sec-
tion 4. In Section 5, we benchmark the performance of our generated decoders,
and conclude in Section 6.

2 Background: Viterbi Decoders

In this section, we provide background on convolutional codes and Viterbi de-
coders. We then introduce the butterfly representation for Viterbi decoders.

2.1 Encoding Convolutional Codes

The purpose of forward error-correcting codes (FEC) is to prevent corruption
of a message by adding redundant information before the message is sent over a
noisy channel. At the receiving side, the redundant data is used to reconstruct
the original message despite errors. In this paper, we focus only on a single type
of FEC, namely convolutional codes. These codes are heavily used in telecom-
munications standards such as GSM and CDMA.

A convolutional encoder takes as input a bit stream and convolves it with a
number of fixed bit sequences to obtain the output bit stream. Since convolution
is equivalent to polynomial multiplication, each of these fixed bit sequences is
called a (binary) polynomial although it is represented by a single integer.

Formally, a convolutional code is specified by N integers smaller than 2K ,
denoted with p1, . . . , pN . Such a code is said to have a constraint length K and
a rate 1/N , i.e., for each input bit, the encoder produces N output bits.

Finite State Machine (FSM) representation.. The encoding process
can be described using a FSM with 2K−1 states that outputs N bits on each
transition (Fig. 1). The precise layout depends on the convolutional code itself
but each state always has a 0-transition (input bit is 0) and a 1-transition (input
bit is 1) to other states. The initial encoding state is assumed to be 0 and the
input stream is padded with K −1 trailing zeros which guarantees that the final
state is also 0.

More precisely, there exists a 0-transition between states n and m if m ≡

2n mod 2K−1. Similarly, there exists a 1-transition between states n and m if
m ≡ (2n + 1) mod 2K−1. Denoting the bit-wise AND as &, the bit-wise XOR
as ⊕ and the XOR on all bits by

⊕

, the output bit bℓ
n→m, corresponding to the

polynomial pℓ when transitioning from state n to state m is computed as

bℓ
n→m =

⊕

(

pℓ&
(

2n ⊕ (m&1)
)

)

.
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Fig. 1: FSM representa-
tion of the encoder r =
1/2, K = 3 with polyno-
mials 7 and 5.
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Fig. 2: Viterbi trellis corresponding to the encoder of
Fig. 1. The highlighted path shows that the message
1010 2 (first padded to 101000 2 to guarantee that the
final state is 0) is encoded as 11 10 00 10 11 00 2.

Viterbi trellis. An equivalent representation of the encoding process “un-
rolls” the finite state machine in time to yield the Viterbi trellis, as shown in
Fig. 2. Each path from the initial state to the final state represents a possible
message. Note that the number of vertical stages, called the frame length F , is in-
dependent of the convolutional code but agreed upon by the two communicating
parties.

The different states of the encoder are placed vertically, the different time
steps, or stages are placed horizontally. The initial state (first stage) when start-
ing a frame is 0. The zero padding explained previously implies that the last
K − 1 transitions are 0-transitions, guaranteeing that the final state is also 0.

2.2 Viterbi Decoding

The Viterbi algorithm is a dynamic programming method that performs maxi-
mum likelihood sequence decoding (MLSD) on a convolutionally encoded stream.
Intuitively, the decoder receives a bit stream and has to find the path in the
Viterbi trellis that best corresponds to it, which would ideally be the same path
the encoder originally took. The best visualization of the Viterbi algorithm again
uses the Viterbi trellis but its purpose is now reversed: the incoming message
is fixed and the path is to be found. It is composed of three phases, the branch

metric computation, the path metric computation, and the traceback.
Branch metrics computation. In the first phase, the Viterbi algorithm

assigns a cost, called the branch metric, to each edge in the trellis. This value
represents how well the received bits would match if we knew the encoder took
the transition corresponding to a given edge. It is computed by taking the Ham-
ming distances between the bits the transition should output and the actually
received ones (Fig. 3).

Path metrics computation. After the previous phase, the problem is
equivalent to finding the shortest path between the entry and the exit vertices
on a directed acyclic graph with weighted edges. Therefore, the second phase is
a breadth-first forward traversal of the graph. It progressively computes the path

metric, which is the shortest path to get from the root to each vertex. If a state
has the path metric π, there exists one message that ends in the state with π
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Fig. 5: Each stage in the Viterbi trellis consists of a perfect shuffle and 2K−2 parallel
butterflies (here K = 3 and F = 6).

corrupted bits and this message is less or equally corrupted than all other possi-
ble messages. While computing this, the predecessor of each node is remembered
as a decision bit1 (Fig. 4).

Traceback. The decision bits describe the ancestor of each vertex. Given this
information and the final state, one can reconstruct the shortest path, called the
survivor path by reading off predecessors.

In a software Viterbi decoder, it is important to perform branch and path
metrics computations simultaneously to improve the ratio of operations over
memory accesses. The fusion of these two phases is called the forward pass.

2.3 Viterbi Butterflies

The trellis shown on Fig. 2 has a regular structure except for the initial and
final stages. The initial stage can be handled like all other stages by inserting
prohibitively high path metrics as appropriate. Handling the final stage like all
other stages simply involves computing all path metrics—the useless ones are
automatically discarded.

Closer inspection of the trellis structure now shows that each stage of the for-
ward pass can be decomposed in two phases: a fixed permutation called a perfect

1 The structure of the FSM guarantees that there are exactly two incoming edges into
each vertex, except for the leftmost nodes in the trellis where there is only one.



shuffle and a parallel operation on 2K−2 2-by-2 substructures called butterflies

(Fig. 5). In the following, we denote the states of a butterfly as shown below:
A

B

U

V

During the path metric computation, each butterfly does two Add-Compare-

Select operations to compute the path metrics πU and πV from the path metrics
πA and πB and the branch metrics βA→U , βA→V , βB→U and βB→V :

{

πU = mindU
(πA + βA→U , πB + βB→U )

πV = mindV
(πA + βA→V , πB + βB→V ) .

(1)

Note that the minimum operator mind(a, b) actually performs both the compare
and select operations simultaneously. It returns the actual minimum of a and b
and stores the binary decision in the decision bit d.

Simplification. Other effects, notably polynomial symmetries and soft de-
cisions, actually modify the above expression. However, for reasons of brevity,
we will not elaborate on them here.

3 Generating Scalar Code

The goal of this paper is to enable computer generation of efficient software
implementations of the Viterbi decoder for arbitrary convolutional codes. To
achieve this, we introduce a domain-specific language, called Viterbi language
(VL), to concisely describe the (most critical) forward pass of the decoder and
its associated compiler that translates the description into actual C code. Both
are described in this section.

There are two main reasons for using a domain-specific language. First, it
structures and simplifies the implementation of our software generator. Second,
it enables the SIMD vectorization of the forward pass through rewriting VL
expressions rather than optimizing C code. The vectorization is explained in
Section 4.

For reasons that will become clear, VL is closely related to the signal process-
ing language (SPL), a domain-specific language that was designed to generate
high performance implementations of linear transforms [6, 7]. We start with a
brief introduction to SPL, motivate VL and explain the compilation process.

3.1 Fast Transform Algorithms: SPL

Linear transforms in signal processing are usually presented as summations, but
can be equivalently viewed as a matrix. A linear transform computes y = Tx,
where x is the complex input vector, y the complex output vector, and T the
fixed transform matrix. For example, the n-point Fourier and Walsh-Hadamard
transforms are defined by the following n × n matrices [5]:

DFTn = [e−2πkl
√
−1/n]0≤k,l<n ,

WHTn =

[

WHTn/2 WHTn/2

WHTn/2 −WHTn/2

]

, WHT1 = [1] .



A fast algorithm for a transform T reduces the number of operations required
for computing Tx and can be viewed as a factorization of T into a product of
sparse structured matrices.

SPL. SPL is the language used to describe such algorithms. It is based on
matrix algebra and captures structured matrices. Parametrized symbols are used
to represent frequently occurring matrices:

– The n × n identity matrix is denoted with In.
– The stride permutation matrix Ln

k reads the input at stride k and stores it
at stride 1. In particular Ln

n/2 is the perfect shuffle that interleaves the first
half of a vector with the second half.

– The butterfly2 matrix F2 corresponds to a DFT on two points: F2 =
(

1 1
1 −1

)

– The n×n bit-reversal permutation is denoted with Rn and the twiddle matrix
Tn

i is a particular diagonal matrix. Their exact form is not important here.

Further, SPL uses matrix constructs to build matrices from other matrices.
An example is the product AB which effectively composes two matrix vector
multiplications: (AB)x = A(Bx). The product can be indexed as in

∏n
i=0

Ai =
A1A1 . . . An.

Finally, the Kronecker product (also called tensor product) of two matrices
and its indexed variant are defined as

A ⊗ B = [ak,lB] , A ⊗j Bj = [ak,lBj ] , A = ak,l .

Most importantly,

In ⊗A =

(

A

. . .
A

)

.

Pease algorithms. The SPL expressions for the Pease O(n log n) algorithms
for the Fourier and Walsh-Hadamard transforms is shown below:

WHT2n →

n−1
∏

i=0

(

(I2n−1 ⊗F2) L2
n

2n−1

)

, (2)

DFT2n →R2n

n−1
∏

i=0

(

Tn
i (I2n−1 ⊗F2) L2

n

2n−1

)

. (3)

The associated dataflow for the Pease WHT is shown in Fig. 6 (the Pease
DFT is very similar). Note the similarity to the Viterbi trellis shown in Fig. 5,
but remember that the butterflies operate differently. The resemblance between
the DFT, the WHT and the Viterbi forward pass was already noted in [10, 11].
Omega networks also share this dataflow [15].

3.2 Representing the Viterbi Algorithm

The Viterbi algorithm is not a linear transform and therefore, does not fit the
earlier framework. However, as discussed above, the forward pass (branch and
path metric computation, excluding the traceback) is closely related to the Pease
algorithms (2) and (3).

2 The Viterbi and DFT butterflies are different but related as we will see.



Fig. 6: Dataflow of the Pease
algorithm for the WHT4.

<op> ::= FK,F Viterbi forward pass

| In identity

| Lmn
n stride permutation

| Bi,j Viterbi butterfly

| <op> <op> composition

|
∏

<op> iterative composition

| <op> ⊗ <op> tensor product

Table 1: Definition of the Viterbi Language in
Backus-Naur form

From now on, we will only consider the forward pass, excluding the trace-
back. The reason is that the traceback is both trivial and computationally much
cheaper than the forward pass, requiring O(F ) operations versus O(2KF ) for
the forward pass. Hence, in practice, except for very short constraint lengths, a
generic traceback is not the performance bottleneck.

Butterflies similarities. The DFT butterfly F2 is an operator that takes
two inputs x0 and x1 and produces two outputs y0 and y1:

{

y0 = x0 + x1

y1 = x0 − x1 .

Similarly, we view the j-th Viterbi butterfly decoding the i-th codeword as
an operator Bi,j that consumes and produces two path metrics as in (1). The
difference between F2 and Bi,j is that, depending on its position, the Viterbi
butterfly uses values from some external arrays to compute the branch metrics,
and it also writes values to an external decision bit array (through the “select”
part of the minimum operator).

Viterbi language (VL). In Table 1, we give the grammar in Backus-Naur
form of a domain specific language called VL tailored to describe the opera-
tions performed during the forward pass of the Viterbi algorithm. VL uses parts
of SPL but also includes the Viterbi butterfly. In SPL, the composition opera-
tion is equivalent to matrix multiplication, but this is not true of VL. We will
occasionally refer to elements of VL as operators.

Forward pass algorithm. Using VL, The forward pass of a Viterbi decoder
with constraint length K, frame length F , denoted FK,F can be expressed in a
way that is similar to the Pease algorithms (2) and (3):

FK,F →

F
∏

i=1

(

(I2K−2 ⊗jBF−i,j) L2
K−1

2K−2

)

. (4)

3.3 Compiler

The VL compiler is responsible for producing efficient code from an algorithm
expressed in VL. By translating an operator A into code, we mean creating the
code for the function A that takes the input vector x and the output vector y as
parameters and performs y = A(x).

To generate the code, the compiler traverses the VL expression tree top-
down, matching sub-trees with the templates shown in Table 2 and specializing



Table 2: Translating VL expressions to code. x denotes the input and y the output
vector. C and D are generic operators optionally parametrized by their superscript
and of domain and range optionally specified by their subscript. x[b:e] denotes the
sub-vector of x starting at b and ending at e.

construct code

y = (CD)x t = D(x);

y = C(t);

y =
∏l−1

i=0
Cix y = C(l-1, x);

for (i=l-2;i>=0;i--)

y = C(i, y);

y = (Im ⊗jC
j
n)x for (j=0;j<m;j++)

y[j*n:j*n+n-1] =

C(j, x[j*n:j*n+n-1]);

y = Lmn
m x for (i=0;i<m;i++)

for (j=0;j<n;j++)

y[i+m*j]=x[n*i+j];

y = Bi,jx see equation (1)

them if needed. Plugging this code inside the generic traceback would yield a
correct, albeit unoptimized implementation.

In practice, various optimizations are performed such as loop unrolling, array
scalarization, strength reduction, copy propagation, precomputation and com-
mon sub-expression elimination. While some of these optimizations may be left
to a C compiler, performing them inside the VL compiler typically yields better
results, as C compilers generally have conservative aliasing assumptions. Most
importantly, it also performs loop merging which means that perfect shuffles are
never explicitly performed but merged (i.e., translated into readdressing) with
the subsequent computation.

4 Generating Vector Code

The vast majority of current processors provide additional instructions working
on vector registers, often branded as “multimedia” extensions like Intel’s MMX
and SSE or AMD’s 3DNow!. The speedups for suitably structured applications
like Viterbi decoders can be significant: for example, [4] achieves up to a 16x
speedup using SSE. We first provide some background on these instructions, then
show how to automatically take advantage of them by rewriting VL expressions.
Finally we tackle overflows, a side effect of vectorizing the Viterbi algorithm.

4.1 Background: Short-Vector Instructions

Single-instruction multiple-data (SIMD) vector instructions instructions perform
operations on short vectors in parallel. We call the length of the vector ν and
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the instructions ν-way. For instance, if ν = 4, a point-wise addition of 4 scalars
could be done with a single vector instruction instead of four scalar instructions.
Also, vector instruction sets offer ways to reorganize (shuffle) the data within a
short vector.

The vector length ν depends on the exact instruction set. The larger ν,
the more operations can be performed simultaneously. In general, the expected
speedup of efficiently vectorized code over its scalar counterpart can be up to the
order of ν which makes it critical in high-performance applications. For example,
Intel-compatible processors offer integer vector instructions for ν = 4 − 16.

The drawback of these instructions is that they add complexity at various lev-
els. First, they only operate on ν contiguous elements, which means algorithms
have to be restructured to expose this parallelism. This step involves algorith-
mic knowledge, and compilers often fail at doing it automatically. Second, since
compilers fail, it has to be done by hand which is complex and time-consuming.
Third, vector instructions are processor specific, so using them requires precise
knowledge and reduces portability.

4.2 Generating Vectorized Decoders: Overview

Fig. 7 gives an overview of our approach to generating a vectorized Viterbi
decoder. The user specifies as input the convolutional code (i.e., the rate 1/N ,
K, the polynomials pℓ and the frame length F ) and the vector length ν. The
generator outputs a ν-way vectorized Viterbi decoder, implemented using SSE.

As shown in Fig. 7, first, the generator instantiates the appropriate VL ex-
pression (4) and generates a scalar decoder (Section 3). This decoder is then
executed to obtain the normalization factors needed to prevent overflows (Sec-
tion 4.4). The ν-way vectorization is then performed by first rewriting the scalar



VL algorithm. The result is then compiled into source code using the previous
template matching system. Finally, a peephole optimizer ensures the features
available in the instruction set are fully exploited. The resulting implementation
of the forward pass is inserted into a generic framework to obtain the complete
decoder.

Our implementation targets 4 to 16-way Intel SSE but the generic principles
behind the generator makes it easy to retarget to another instruction set.

4.3 Vectorizing Rewriting System

In this section we explain how to automatically vectorize the forward pass of the
Viterbi decoding using VL. First we identify some VL expressions, called vector
base cases, that can directly be mapped into vector code. Vectorization is then
achieved by rewriting the forward pass algorithm (equation (4)) into an equiva-
lent VL expression that consists exclusively of vector base cases. This expression
is then mapped into vector code and further optimizations are performed. The
details are explained next.

Base cases. For the vectorization of the Viterbi algorithm, three types of
base cases are required.

– One construct that can be implemented with all ν-way short vector instruc-
tion sets is C ⊗ Iν with C being any side-effect free VL operator. When
implementing C ⊗ Iν , the template system first implements C with its cor-
responding scalar template (Table 2) and then replaces all scalar variables
and scalar operations inside the code by their ν-way vector counterparts.
For instance, L4

2 is a permutation of four elements whereas L4
2 ⊗ Iν is a per-

mutation of four vectors of ν elements each. To denote that the construct is
a base case, we write C⊗̄Iν .

– The Viterbi kernel has side effects and thus does not fall into the previous
category. We denote by ~Bν

i,l the vector code that executes ν Viterbi kernels
over contiguous elements.

– Another class of vector base cases is the perfect shuffle of 2ν elements, written

as ~L
2ν

ν . We use the method in [16] to automatically generate efficient vector
code for these permutations from the definition of the instruction sets.

Vector tags. The vectorization subsystem first tags a given VL expression
with the vector length ν, which is denoted like this: A ν . The full expression is
then rewritten using algorithms, manipulation and tag propagation rules until
all tags disappear. At this point, the expression only consists of vector base
cases that can be implemented using the template system. The same approach
has been successfully applied with linear transforms for vectorization [9] and
parallelization3 [8].

3 This paper does not handle the parallelization of the Viterbi algorithm because,
in traditional settings, it is not relevant. Even in multi-core systems, the cost of
exchanging data over the interconnect is too high to split the trellis handling over
multiple cores. It is more practical to parallelize by assigning different frames to
different cores.



Table 3: Manipulation (left) and vectorization (right) rules. C and D are generic
operators optionally parametrized by their superscript.

Imk ⊗jC
j = Im ⊗j1(Ik ⊗j2Cj1k+j2)

Lkmn
km = (Ik ⊗Lmn

m )(Lkn
k ⊗ Im)

(Im ⊗C)(Im ⊗D) = (Im ⊗CD)

(Im ⊗jC
j
n) Lmn

m = Lmn
m (Cj

n ⊗j Im)

CD ν → C ν D ν
∏

C
ν

→
∏

C ν

Im ⊗j Cj

ν
→ Im ⊗j Cj

ν

C ⊗ Iν ν
→ C⊗̄ Iν

Bi,lν+j ⊗j Iν
ν
→ ~Bν

i,l

L2ν
ν ν

→ ~L
2ν

ν

Rules. There are three different kinds of rules:

– The algorithms describe how to implement a specification using VL. In this
paper, we only use the Viterbi algorithm (4).

– The manipulation rules (Table 3 left) are basic mathematical identities that
can be proved from the definitions of the symbols.

– The tag propagation rules (Table 3 right) describe how the tags interact with
the other symbols.

Viterbi vectorization. Using all the manipulation rules, the system au-
tomatically derives the following equality, which we call the partial tensor flip,
that holds for any parametrized operator Cj and integers m, n and ν such that
ν divides m:

(Im ⊗jC
j) Lmn

m =
(

Im/ν ⊗j1 Lnν
ν

(

Cj1ν+j2 ⊗j2 Iν
))

(L
mn/ν
m/ν ⊗ Iν) .

Because of this transformation, the rewriting systems returns the following vec-
torized form of the algorithm in (4) and consists exclusively of base cases that
can be mapped to code as explained above:

FK,F
ν
→

F
∏

i=1

[(

I2K−2/ν ⊗j1
~L

2ν

ν
~Bν

F−i,j1

)

(L
2

K−1/ν

2K−2/ν
⊗̄ Iν)

]

.

In words, at each stage, this algorithm first permutes full vectors then it-
eratively (i = 1, . . . , F ) computes 2K−2/ν independent Viterbi butterflies and
performs in-vector permutations L2ν

ν on each result. Remember that in the final
code, the initial permutation in each i-step is never performed but merged with
the subsequent butterfly computations.

Code generation. Using the previously explained template system, code
can be generated for the algorithm above. In practice though, an additional pass
with a peephole optimizer is inserted to handle the specifics of the instruction
set which is unfortunately very irregular.

4.4 Overflows

The path metrics increase on average with the stage number. For implementation
however, they must stay within a finite window of representable values. The



precision offered by short vector instructions might not be sufficient to guarantee
the absence of overflows so the algorithm must sometimes be slightly modified.

For instance, with Intel’s SSE, all vector operations are performed in 128 bits
vector registers. Therefore, in 4-way mode, elements are 32-bits long whereas in
16-way mode, elements are 8-bits long. In this last case, metrics are likely to
overflow the window of 256 “legal” values.

There are known methods to help rescaling these metrics (see [17]) but they
are based on empirical properties of the code which is why we need to first gen-
erate a scalar version of the decoder (i.e., in which overflows will not occur) and
only then generate the vectorized version once these properties are determined.
We will not detail this process further even though it is fully automated.

5 Results

In this section, we analyze the performance of our generated Viterbi decoders.
We compare against existing optimized implementations, show the generality of
our generator, and show the speedup obtained by vectorization.

Experimental Setup. All experiments are performed on an Intel Core 2 Ex-
treme X9650. All code is compiled using the Intel Compiler (icc) 10.1 with per-
formance flags (-fast -fomit-frame-pointer -fno-alias). The performance
in each case is measured by entirely decoding (forward pass and traceback) mul-
tiple frames. Initialization and precomputation (one time costs) are excluded.

Our generator supports any valid combination of rate, polynomials, frame
length, and constraint length K ≥ 64. Vectorization is available for all convolu-
tional codes and for processors that are SSE-compatible through 4-way, 8-way
and 16-way intrinsics.

Benchmarking. We first compare our generated decoders against Karn’s
hand-written decoders [4]. Karn’s forward error correction software supports
four codes (1/2, K = 7 nicknamed “Voyager”, 1/2, K = 9, 1/3, K = 9 and
1/6, K = 15 nicknamed “Cassini”) available for different vector lengths. Not
all vector lengths are supported for all codes. The forward pass in [4] is written
separately in assembly for each combination of code and vector length.

In Fig. 8, we show the performance results for these four codes and for all
vector lengths. A missing bar signifies that the implementation is not provided
by Karn. Analysis of the plots shows that our generated decoders have roughly
equal performance compared to Karn’s software.

Performance of supported codes. To show the generality of our generator
and the consistent performance, we generated decoders for known “good” codes
(see [18]) of rate 1/2 collected and all four vector lengths 1, 4, 8, 16. Fig. 9a
shows the performance results and, as expected, the lines show the exponential
decay in performance when the constraint length increases. Similar graphs are
observed for other rates.

4 The limitation is an artifact of the actual implementation. The methods presented
in this paper are applicable for all constraint lengths.
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Fig. 8: Performance comparison between the generated and hand-optimized decoders.

Quality of Vectorization. Fig. 9b shows the speedup achieved by vec-
torization in Fig. 9a. The baselines are the non-vectorized scalar decoders. We
observe a consistent speedup of about 3.5 for 4-way, 6 for 8-way, and 10 for
16-way vectorization. The smaller gains for longer vectors is expected since they
require more involved shuffle operations. The peak for both 16-way and 8-way
with short constraint length is caused by the reduction of the memory footprint
due to the use of shorter data types.

Code Generation Time. Note that, in the previous graphs, we present
40 different optimized decoders, all of which were generated in less than one
hour. We estimate that it would take an expert more than a day to produce
each one of the forward passes in assembly, which implies an improvement in the
development time in the range of three orders of magnitude.

6 Conclusion

We presented a framework and its implementation that completely automates
the implementation of fast software Viterbi decoders for modern computing plat-
forms with SIMD instruction sets by generating the performance critical forward
pass. The basic idea is to construct a domain specific mathematical language to
express the forward pass, to vectorize by rewriting in this language, and to use
a backend for low level optimizations. The same approach could be used for
parallelization but it is more efficient (and trivial) to parallelize across frames.

Our framework enables the instant generation of any decoder across a wide
spectrum of parameters. The generated decoders’ performance is on-par with
specialized expert implementations. Further, it enables fast porting to new ar-
chitectures as only small changes are needed to support a new instruction set.

We invite the reader to visit the online interface to our generator at www.

spiral.net/software/viterbi.html.
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