TITLE

Fast Fourier Transform

BYLINE

Franz Franchetti and Markugigchel

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA

USA

{franzf, pueschél@ece.cmu.edu

SYNONYMS

FFT, fast algorithm for the discrete Fourier transform (DFT)

DEFINITION

A fast Fourier transform (FFT) is an efficient algorithm to compute therelisd~ourier transform (DFT)
of an input vector. Efficient means that the FFT computes the DFT of-alement vector irO(n logn)
operations in contrast to th@(n?) operations required for computing the DFT by definition. FFTs exist for
any vector lengtn and for real and higher-dimensional data. Parallel FFTs have beefoded since the
advent of parallel computing.

DISCUSSION

I ntroduction

The discrete Fourier transform (DFT) is a ubiquitous tool in science agitheering including in digital sig-
nal processing, communication, and high-performance computing. Appfisanclude spectral analysis,
image compression, interpolation, solving partial differential equatiomkireany other tasks.

Givenn real or complex inputsyg, ..., z,_1, the DFT is defined as
ye= > witmy, 0<k<n, 1)
0<l<n

with w, = exp(—2wi/n), i = /—1. Stacking thex, andy, into vectorsz = (xq,...,z,_1)7 and
vy = (y0,-..,yn_1)" yields the equivalent form of a matrix-vector product:

y=DFT,z, DFT, = [w*o<kicn)

Computing the DFT by its definition (2) requir€¥n?) many operations. The first fast Fourier transform
algorithm (FFT) by Cooley and Tukey in 1965 reduced the runtim@ telog(n)) for two-powersn and
marked the advent of digital signal processing. (It was later discdueed this FFT had already been de-
rived and used by Gauss in the 19th century but was largely forgottea#ian [9].) Since then, FFTs have
been the topic of many publications and a wealth of different algorithms exiss. ificludesO (n log(n))
algorithms for any input size, as well as numerous variants optimized for various computing platform and

computation requirements. The by far most commonly used DFT is for two+pioywet sizesn, partly
because these sizes permit the most efficient algorithms.

The first FFT explicitly optimized for parallelism was the Pease FFT publishd®@8. Since then
specialized FFT variants were developed with every new type of parahepuater. This includes FFTs for
data flow machines, vector computers, shared and distributed memory mspoos, streaming and SIMD
vector architectures, digital signal processing (DSP) processeldpiiogrammable gate arrays (FPGAS),
and graphics processing units (GPUSs). Just like Pease’s FFT, thedlel-FTs are mainly for two-powers
n and are adaptations of the same fundamental algorithm to structurally matchgeteplatform.

On contemporary sequential and parallel machines it has become vdrphabtain high-performance
DFT implementations. Beyond the choice of a suitable FFT, many other implemeritasies have to be
addressed. Up to the 1990s there were many public FFT implementationsggeiary FFT libraries
available. Due to the code complexity inherent to fast implementations and tredfasces in processor
design, today only a few competitive open source and vendor FFT librare available in the parallel
computing space.

FFTs: Representation

Corresponding to the two different ways (1) and (2) of representiadtRT, FFTs are represented either
as sequences of summations or as factorizations of the transform i&fiix. The latter representation is
adopted in Van Loan’s seminal book [18] on FFTs and used in the followliagxplain this representation
assume as example tHat'T,, in (2) can be factored into four matrices

DFT,, = My MsMsM,. 3
Then (2) can be computed in four steps as
t = Myx, uw= Mst, v = Mou, y = Mv.

If the matricesM; are sufficiently sparse (have many zero entries) the operations aoupteed to a direct
computation is decreased and (3) is called an FFT. For exampl&, can be factorized as

1 1 1 1 1 1

1 1 1 1 -1 1
DFT, = 1 -1 1 11 1) 4)

1 -1 7 1 -1 1

where omitted values are zero. This example also demonstrates why the neatoxmultiplications in (3)
are not performed using a generic sparse linear algebra library,tcg, the); are known and fixed, by a
specialized program.

Conversely, every FFT can be written as in (3) (with varying numberaabfs). The matrices/; in
FFTs are not only sparse but also structured, as a glimpse on (4) illgstfélis structure can be efficiently
expressed using a formalism based on matrix algebra and also clearygsapithe parallelism inherent to
an FFT.

Matrix formalism and parallelism. Then x n identity matrix is denoted witl,,, and thebutterfly
matrixis a DFT of size 2:

DFT, =[] _i]. (5)

TheKronecker producof matricesA and B is defined as

A® B = [aka], for A = [akjg].

(@y=(I1®DFT2)z (b)y=(DFT2®)z

Figure 1: Dataflow (right to left) of a block parallel and its “dual” @®r parallel construct (figure from [5]).

It replaces every entry;, , of A by the matrixa;, 3. Most important for FFTs are the cases whdrer B
is the identity matrix. As examples consider

r 1 T r 1 T

Iy ® DFTy = DFTy ®I4 =

1 1)

with the corresponding dataflows shown in Fig. 1. Note that the dataflevBan right to left to match

the order of computation in (3)4 ® DFT, clearly expresses block parallelism: four butterflies computing
on contiguous subvectors; wherda8 T, ®1, expresses vector parallelism: four butterflies operating on

interleaved subvectors which is the same as wewtor butterfly operating orvectorsof length four as
emphasized in Fig. 1(b). More precisely, consider the cod®itrf; (i.e.,y = DFTs x):

y[0]
y[1]

Then code foDF Ty ®14 is obtained by replacing every scalar operation by a four-way vectratipn:

x[0] + x[1];
x[0] - x[1];

y[0:3] = x[0:3] + x[4:7];
y[4:7] = x[0:3] - x[4:7];

Here,x[a: b] denotes (Matlab or FORTRAN style) the subvectoxdtarting ata and ending ab.
These examples illustrate how the tensor product captures parallelismmnoesize:

block parallelism+ blocks): I, ® A, (6)
vector parallelismi-way): A ® I,, @)

whereA is any matrix.

Thestride permutatiomrmatrix L)' permutes the elements of the input vectoiras- j — jm +1i, 0 <
i < m, 0 <j < n. Ifthe vectorz is viewed as am x m matrix, stored in row-major order, thef]’"
performs a transposition of this matrix. Furtherffis a permutation (matrix), thedA” = P~1 AP is the
conjugationof A with P.

Cooley-Tukey FFT. The fundamental algorithm at the core of the most important parallel FRede
in the literature is the general-radix decimation-in-time Cooley-Tukey type Kkpilessed as

DFT, = (DFT), ®IL,)T" (I ® DFT,)L}, n=km. ©)

Here,k is called the radix and’” is a diagonal matrix containing theiddle factors The algorithm factors
the DFT into four factors as in (4), which shows the special ease4 = 2 x 2. Two of the four factors in

3

DFT, ® I, 746 I, ® DFT, L —_—
= | | -—
", " —
DFT16 = " a
Lt LI —
", T —
(a) Matrix factorization (b) Data-flow graph

Figure 2: Cooley-Tukey FFT (8) fol6 = 4 x 4 as matrix factorization and as (complex) data-flow graptn(fright
to left). Some lines are bold to emphasize the strided agtigsse from [5]).

(8) contain smaller DFTs; hence the algorithm is divide-and-conquehasdo be applied recursively. At
each step of the recursion the radix is a degree of freedom. For twermimes: = 2¢, (8) is sufficient to
recurse up ta = 2, which is computed by definition (5).

Fig. 2 shows the special ca$é = 4 x 4 as matrix factorization and as corresponding dataflow graph
(again to be read from right to left). The smaller DFTs are representbtbelss with different shades of
gray.

A straightforward implementation of (8) suggests four steps correspgtmlthe four factors, where two
steps call smaller DFTs. However, to improve locality, the initial permutatipims usually not performed
but interpreted as data access for the subsequent computation, anddiiie tiagonall’? is fused with
the subsequent DFTs. This strategy is chosen, for example, in the liBFaW 2.x and the code can be
sketched as follows
void dft(int n, conplex *y, conplex *x) {

int k = choose_factor(n);

/1 t1l = (1_k tensor DFT_n)L(n, k)*x

for(int i=0; i < k; ++i)

dft _iostride(m k, 1, t1 + mri, X + mi);

/1y = (DFT_k tensor |I_m diag(d(j))

for(int i=0; i < n ++i)

dft _scal ed(k, m preconp_d[i], y + i, t1 +i);
}

/1 DFT variants needed
void dft_iostride(int n, int istride, int ostride, complex *y, conplex *x);
void dft_scaled(int n, int stride, conplex xd, conplex *y, conplex *x);

The DFT variants needed for the smaller DFTs are implemented similarly bag8yl dimere are many
additional issues in implementing (8) to run fast on a non-parallel platforre.fdtus here is on mapping
(8) to parallel platforms for two-power sizes

Parallel FFTs Basicidea

The occurrence of tensor products in (8) shows that the algorithm haseint block and vector parallelism
as explained in (6) and (7). However, depending on the platform aneffioient mapping, the algorithm
should exhibit one or both forms of parallelism throughout the computationetexkent possible. To
achieve this, (8) can be formally manipulated using well-known matrix identitiesrsin Table 1.

The table makes clear that there is a virtually unlimited set of possible variai&s which also explains
the large set of publications on FFTs. These variants hardly differ iratipas count but in structure, which

4

(BC)T = CT'BT

(AeB)T = AT®BT
Iin = In®Iy,
A®B = (A®I)(I, ® B)
L, @(BC) = (In@B)(I,)
(BC)& I, = (B@In)((,*@f)
A®B = L"(B®A)Lm"
(Lpm ™ = Ly
Ly = (Ly" @ In)(Iy @ L")
Lt = (Le® L") (LE" @ L)
Lgmn = [kmnkmn

Table 1: Formula identities to manipulate FFT4.isn x n, andB andC arem x m. A" is the transpose o.

is crucial for parallelization. The remainder of this article introduces the iingsortant parallel FFTs
derived in the literature. All these FFTs can be derived from (8) usaigerl. The presentation is divided
into iterative and recursive FFTs. Each FFT is visualized for size16 in a form similar to (1) (and again
from right to left) to emphasize block and vector parallelism. In these vistializg the twiddle factors are
dropped since they do not affect the dataflow and hence pose ntusalymroblem for parallelization.

lterative FFTs

The historically first FFTs that were developed and adapted to paraltédpies are iterative FFTs. These
algorithms implement the DFT as a sequence of nested loops (usually thneegimplest areadix-r forms
(usuallyr = 2,4, 8), which require an FFT size of = r‘; more complicated mixed-radix radix variants
always exist. They all factddF T, into a product o¥ matrlces, each of which consists of a tensor product
and twiddle factors. Iterative algorithms are obtained from (8) by réiexpansion, flattening the nested
parentheses, and other identities in Table 1.

The most important iterative FFTs are discussed next, starting with the siaretaion, which is not
optimized for parallelism but included for completeness. Note that the ezaut df the twiddle factors
differs in these FFTs, even though they are denoted with the same symbol.

Cooley-Tukey iterative FFT. The radixs iterative decimation-in-time FFT

/—1
DFT,. = (H (I ® DFT, ®I,,M1)D;""> R, 9)
=0

is the prototypical FFT algorithm and shown in Fig.}zﬁz is the radix digit reversal permutation and the
diagonalD;”Z contains the twiddle factors in thith stage. The radix-2 version is implemented by Numerical
Recipes using a triple loop corresponding to the two tensor products {imaéwops) and the product (outer
loop).

Formal transposition of (9) yields tlierative decimation-in-frequency FET

/—1
DFT,. = R [[D}’ (I,e-i-+ ® DFT, @L,). (10)
=0

Both (9) and (10) contain the bit reversal permuta’rﬂiﬁ. The parallel and vector structure of the occurring
butterflies depends on the stage. Thus, even though every stage isuddlie ghe algorithm as is is neither

5

Stage3 Stage 2 Stagel Stage0 Bit reversal

\
\ /7
\V/i
Vi

nnnnnnn

vvvvvvv

A
/AN
/A
/R

(1 @ DFT2 1) D) (2 © DET2 1) D) ((14 © DFT: 1) DY

SN—

((1s @ DFT> 1) D3) R

Figure 3: Iterative FFT (9) fom = 2% andr = 2.

Stage 3 Stage 2 Stage 1 Stage0 Bit reversal
Comm Parallel Comm Parallel Comm Parallel Comm Parallel Communica tion

HEEENEREREEEN
]

(L56 (Is ® DFT,)Dgﬁ) (L§6 (Is © DFT,)D}G) (L%G(Ig © DFT,)D%G) (L%ﬁ(ls ® DFT,)D§6)R;6

Figure 4: Pease FFT in (11) for = 2% andr = 2.

well suited for machines that require block parallelism nor vector parallelisar. this reason very few
parallel triple-loop implementations exist and compiler parallelization and veatmniztend not to succeed
in producing any speed-up when targeting the triple-loop algorithm.

Pease FFT. A variant of (9) is thePeasd=FT

-1
DFT,, = (H L (I,e-1 © DFT,)D§e> R, (11)
1=0

shown in Fig. 4 forr = 2. It has constant geometry, i.e., the control flow is the same in each stage stag
and maximizes block parallelism by reducing the block sizesdn which single butterflies are computed.
However, the Pease FFT also requires the digit reversal permutatiai sEgge of the Pease algorithm
consists of the twiddle diagonal and a parallel butterfly block, followed bysime data exchange across
parallel blocks specified through a stride permutation. The Pease FRarigemally developed for parallel
computers, and its regular structure makes it a good choice for fieldgmmogable gate arrays (FPGAS) or
ASICs. Formal transposition of (11) yields a variant with the bit-revarstde end.

Bit reversal Stage3 Stage2 Stagel Stage 0
Communication ~ Comm Vbutterfly Comm Vbutterfly Comm Vbutterfly Comm Vbutterfly

g\ \/ _/ \ /
W\ \V// \\V/// \\WV//
L \A/AWL Vi

W W
Wik Wi
- L AA Y AW A WM WAL
B T T T
i i
/i iy

i\ / A\
/AN /A A /A
1\ I\ 1\ I\
/ \ 7\ 7\ /\

R3® (LD (DFT: 15)) (L DI (DFT: @14)) (L DY (DFT: @14)) (L DI (DFT: @15))

Figure 5: Korn-Lambiotte FFT in (12) for, = 2* andr = 2. Vbutterfly = vector butterfly.

Korn-Lambiotte FFT. The Korn-Lambiotte FFTis given by

f—1
DFT,. = R (L'y, D} (DFT, ®Irz—1)> , (12)

1=0

and is the algorithm that is dual to the Pease FFT in the sense used in FignelyN# has also constant
geometry, but maximizes vector parallelism as shown in Fig. 5 fer 2. Each stage contains one vector
butterfly operating on vectors of lengttyr, and a twiddle diagonal. As last step it performs the digit
reversal permutation. The Korn-Lambiotte FFT was developed for eadtow computers. It is derived
from the Pease algorithm through formal transposition followed by thel&@os of the tensor product
from a parallel into a vector form.

Stockham FFT. The Stockham FFT

-1 _
DFT,: = [[(DFT, ®Ie) DI (L ® L), (13)
=0

is self-sorting i.e., it does not have a digit reversal permutation. It is shown Fig. 6 for2. Like the Korn-
Lambiotte FFT, it exhibits maximal vector parallelism but the permutations chamrgesastages. Each of
these permutations is a vector permutation, but the vector length increasefattpr ofr in each stage
(starting with 1). Thus, for most stages a sufficiently long vector lengthhieeed. The Stockham FFT was
originally developed for vector computers. Its structure is also suitablgrémhics processors (GPUs), and
indeed most current GPU FFT libraries are based on the Stockham R&Tofimal transposition of (13) is
also called Stockham FFT.

Recursive FFT Algorithms

The second class of Cooley-Tukey-based FFTs are recursivetigs, which reduce a DFT of size =

km into k DFTs of sizem andm DFTs of sizek. The advantage of recursive FFTs is better locality and
hence better performance on computers with deep memory hierarchiggalfbecan be used as kernels
for iterative algorithms. For parallelism, recursive algorithms are derif@dexample, to maximize the
block size for multicore platforms, or to obtain vector parallelism for a fixectarelength for platforms
with SIMD vector extensions. The most important recursive algorithmsiacessed next.

Stage3 Stage2 Stagel StageO
Vbutterfly VShuffle Vbutterfly VShuffle Vbutterfly Vshuffle Vbutterfly VShuffle

\/ \ _/ N/
\W// \W// \W// \W//
§\V/§ §\V// §\V// }\\///

AN

L
RN
L]

A / / /
/A /A /A /A
/A I\ /A /A

EEEEEERNEREEN

((DFT2@1s) DY (13 Is)) ((DFT2 @1s) DI (13 @ 1)) ((DFT2 @1s) D (L @ I2)) ((DFT2 @1s) DY (L3 @))

Figure 6: Stockham FFT in (13) forn = 2* andr = 2. Vbutterfly = vector butterfly, VShuffle = vector shuffle.

Recursive FFT Accumulated
shuffles

\W//
\V//
W
XY

A
/I
T
77\

(DFT, @I5) T3¢ (12 ® ((DFT2 ®I)TE (I @ (DFTy @L)TH (I @ DFTg)L%))Lg)) L1

Figure 7: Recursive radix-2 decimation-in-time FFT for= 2*.

Recursive Cooley-Tukey FFT. The recursive, general-radix decimation-in-time Cooley-Tukey FFT was
shown before in (8). Typicallyi is chosen to be small, with values up to 64. If (8) is applied te- ¢
recursively withk = r the algorithm is called radix-decimation-in time FFT. As explained before, the
initial permutation is usually not performed but propagated as data actessaersmaller DFTs. For radix-

2 the algorithm is shown in Fig. 7. Note that the dataflow is equal to Fig. 3, budrtiier of computation is
different as emphasized by the shading.

Formal transposition of (8) yields thiecursive decimation-in-frequency FFT

DFT,, = L (I ® DFT,)T" (DFT), ®1), n = km. (14)

Recursive application of (8) and (14) eventually leads to prime gizeslm, which are handled by a special
prime-size FFT. For two-powersthe butterfly matrixDFT'5 terminates the recursion.

The implementation of (8) and (14) is more involved than the implementation of iter@torithms, in
particular in the mixed-radix case. The divide-and-conquer natui® efnd (14) makes them good choices
for machines with memory hierarchies, as at some recursion level the \gaktrwill be small enough to
fit into a certain cache level, a property sometimes catkche oblivious Both (8) and (14) contain both

Vector FFT Shuffle Vector FFT

\ \/

\W// /
\V/i | ||
W/ Vit L
AV | AV ||
| XK ||
BN || BN L
/R0 NN ||
AN | AN ||

TN TN

\ I\

7 \ /\

(((DFT2 ®1)T4 (I ® DFT,)LA) @ I4)L}16T416 (((DFT2 ®1)T4 (I, ® DFT)LY) @ 14)

Figure 8: Four-step FFT fon = 2* andk = m = /n = 4.

vector and parallel blocks and stride permutations. Thus, despite theieiritiata parallelism, they are not
ideal for either parallel or vector implementations. The following variantsesicthis problem.
Four-step FFT. Thefour-step FFTis given by

DFT, = (DFT), ®I,)T" L (DF Ty, ®1I;), n = km, (15)

and shown in Fig. 8. It is built from two stages of vector FFTs, the twiddlgatial and a transposition.
Typically, k, m ~ /n is chosen (also called “square root decomposition”). Then, (15)tsaauhe longest
possible vector operations except for the stride permutation in the middle.

The Four Step FFT was originally developed for vector computers andrile permutation (or trans-
position) was originally implemented explicitly while the smaller FFTs were expandédsome other
FFT—typically iterative. The transposition can be implemented efficiently udking techniques. (15)
can be a good choice on parallel machines that execute operations oveltiogs well and on which the
overhead of a transposition is not too high. Examples includes vector ¢eraund machines with stream-
ing memory access like GPUs.

Six-step FFT. Thesix-step FFTis given by

DFT, = L} (I, ® DFTy) L2 T7 (I, ® DET,,) LY, n = km, (16)

and shown in Fig. 9. It is built from two stages of parallel butterfly blodkg, twiddle diagonal, and

three global transpositions (all-to-all data exchanges). (16) was alligitleveloped for distributed mem-
ory machines and out-of-core computation. Typicallym =~ +/n is chosen to maximize parallelism.
The transposition was originally implemented explicitly as all-to-all communication wiglemaller FFTs

were expanded with some other FFT algorithm—typically iterative. As in (18)reélquired matrix trans-

position can be blocked for more efficient data movement. (16) can bedchamice on parallel machines
that have multiple memory spaces and require explicit data movement, like messajey, offloading to

accelerators (GPUs and FPGAs), and out-of-core computation.

Multicore FFT. Themulticore FFTfor a platform withp cores and cache block sizds given by

DFT, = (I, ® (DFT), @1,,,)) (5O @)

X (I ® (I © DET,) LYEY (E5™ @ Dy) @ 1), 1=k, (17)

Communication Parallel DFTs Communication Parallel DFTs Communication

L1 (14 ® ((DFT2 ®)Ty (I ® DFTQ)L‘QL))LQGTJG (14 ® ((DFT2 @) Ty (I ® DFTz)Lé))L}f

Figure9: Six-step FFT fom = 2* andk = m = /n = 4.

Block exchange Parallel DFTs Block exchange Parallel DFTs Block exchange

(L3 ® I) ([2® ((DFT2 @[2)T24([2®DFT2)L§> @12) (L3 & I,) T}° ([2® (12®(DFT2 ®12)T24(12®DFT2)> RS) (Lo L)

Figure 10: Multicore FFT forn = 24, k = m = 4, p = 2 cores, and cache block size= 2.

and is a version of (8) that is optimized for homogeneous multicore CPUs with rgehiezarchies. An
example is shown in Fig. 10. (17) follows the recursive FFT (8) closelyehsures that all data exchanges
between cores and all memory accesses are performed with cache tdackagty. For a multicore with
cache block size. andp cores, (17) is built solely from permutations that permute entire cache lives a
p-way parallel compute blocks. This property allows for parallelization ofllsprablem sizes across a
moderate number of cores. Implementation of (17) on a cache-basenhsgdies on the cache coherency
protocol to transmit cache lines of lengihbetween cores and requires a global barrier. Implementation on
a scratchpad based system requires explicit sending and receiting ddita packets, and depending on the
communication interface additional synchronization may be required.

The smaller DFTs in (17) can be expanded, for example, with the shadre€T (discussed next) to
optimize for vector extensions.

SIMD short vector FFT. For CPUs with SIMDr-way vector extensions like SSE and AltiVec and a

10

Vector FFTs In-Register Shuffles Vector FFTs Vector Shuffle

=
|
L[]

VAN
I
I\
[/
7\

[T]

L

(((DFT2 ®L)T4 (I ® DFT2)L3) ® I) ®[2)T416 (12 ®(L4® 1) (I, ® L) ((DFT, ®15) T4 (I, ® DF T2) L3) ®12) (Lio L)

Figure 11: Short vector FFT in (18) for = 2%, k = m = 4, and (complex) vector length = 2.

memory hierarchy, thehort vector FFTis defined as

X (Iny © LY)(DFT,, ®1,)) (LZ;Z ©1,), n=km, (18)

and can be implemented using solely vector arithmetic, aligned vector memossaand a small number
of vector shuffle operations. An example is shown in Fig. 11. All compuégaijons in (18) have complex
v-way vector parallelism. The only operation that is pevay vectorized is the stride permutatiobgz,
which can be implemented efficiently using in-register shuffle instruction8) rglquires the support or
implementation of complex vector arithmetic and packmplex elements into a machine vector register
of width 2v. A variant that vectorizes the real rather then the complex dataflow exists.

Vector recursion. Thevector recursiomerforms a locality optimization for deep memory hierarchies
for the first stage/, @ DFT,,)L} of (8). Namely, in this stagBFT,, is further expanded using again (8)
with m = myms and the resulting expression is manipulated to yield

(I ® DFT,,) b= (Ik ® (DFTm1 ®Im2)TnT2)
X (Lzml ®]m2) (Iml ® (Ik ® DF T,)Ll]zmQ) (Lml ® Ik)- (19)

While the recursive FFT (8) ensures that the working set will eventualiptth any level of cache, large
two-power FFTs induce large 2-power strides. For caches with lovgexcagivity these strides result in a
high number of conflict misses, which may impose a severe performanedtypefor large enough two-
power sizes, in the first stage of (8) every single load will result in aeanlss. The vector recursion
alleviates this problem by replacing the stride permutation in (8) by stride peiongaf vectors, at the
expense of an extra pass through the working set. Since (19) ma(tl;h@sDFTn)L’,j" it is recursively
applicable and will eventually produce child problems that fit into any cache. |&'he vector recursion
produces algorithms that are a mix of iterative and recursive as showg.ihZ

Other FFT topics

So far the discussion has focused on one-dimensional complex twa-pa&d=FTs. Some extensions are
mentioned next.

11

Vector stage ~ Vector stage Vector Shuffle Recursive FFTs Vector Shuffle

W/
\W/i
W/
AV
N
XAXKR
/RN
A\
AN
7\

EEENEEEEEEE

(DFT: @15) T8 (I @ (DFT> @L)T5) (L3 @ 1) (I @ (I @ ((DFT2 @) T3 (I © DFT2))) RS) (L5 © I2)

Figure 12: Vector recursive FFT for. = 2%. The vector recursion is applied once and yields vectorfles,ftwo
recursive FFTs, and two iterative vector stages.

General size recursive FFT algorithms. DFT algorithms fundamentally different from (8) include
prime-factor . is a product of coprime factors), Raderié prime), and Bluestein or Winograd (any. In
practice these are mostly used for small size¥2, which then serve as building blocks for large composite
sizes via (8). The exception is Bluestein’s algorithm that is often used to wengrge sizes with large
prime factors or large prime numbers.

DFT variants and other FFTs. In practice, several variants of the DFT in (2) are needed including
forward/inverse, interleaved/split complex format, for complex/real imfad, in-place/out-of-place, and
others. Fortunately, most of these variants are close to the standard QHTs0 fast code for the latter can
be adapted. An exception is the DFT for real input data, which has its asa of FFTs.

Multidimensional FFT algorithms. The Kronecker product naturally arises in 2D and 3D DFTs, which
respectively can be written as

DFT,uxn = DFT,,®DET,, (20)
DFTyymxn = DFT.®DFT,,®DFT, . (21)

For a 2D DFT, applying identities from Table 1 to (20) yields the row-columpréigm
DFTpxn = (DFT,, ®1,) (I, @ DFT,). (22)
The 2D vector-radix algorithm can also be derived with identities from Taldtem (20):
DF Tynsrs = (DF Ty @1,5) &5 90 (0 . 779)
% (Iyy ® DF T) @59 (@ [7) . (23)

Higher-dimensional versions are derived similarly, and the associativitygives rise to more variants.

RELATED ENTRIES

FFTW
FFTE
SPIRAL
ATLAS

12

BIBLIOGRAPHIC NOTESAND FURTHER READING

The original Cooley-Tukey FFT algorithm can be found in [2]. The B&aBT in [13] is the first FFT
derived and represented using the Kronecker product formalismoffiee parallel FFTs were derived in
[10] (Korn-Lambiotte FFT), [16] (Stockham FFT), [11] (Four-StepTH, [1] (Six-Step FFT). The vector
radix FFT algorithm can be found in [8], the vector recursion in [7], thersvector FFT in [3], and the
multicore FFT in [4]. A good overview on FFTs including the classical pdraligiants is given in Van
Loan’s book [18] and the book by Tolimieri, An and Lu [17]; both aredzhen the formalism used here.
Also excellent is Nussbaumer FFT book [12]. An overview on real Féarsbe found in [20].

At the point of writing the most important fast DFT libraries are FFTW by Friaga Johnson [6, 7],
Intel's MKL and IPP, and IBM’'s ESSL and PESSL. FFTE is currentlydlisethe HPC Challenge d3lobal
FFT benchmark reference implementation. Most CPU, GPU, and FPGA vendorgain DFT libraries.
Some historic DFT libraries like FFTPACK are still widely used. Numerical Rex{i4] provides C code
for an iterative radix-2 FFT implementation. BenchFFT provides up-toJ&iebenchmarks of about 60
single-node DFT libraries. The Spiral system is capable of generatiadlgddFT libraries directly from
the tensor product based algorithm description [19, 15].

References

[1] D. H. Bailey. FFTs in external or hierarchical memody.Supercomputingt:23—-35, 1990.

[2] J. W. Cooley and J. W. Tukey. An algorithm for the machimdcalation of complex Fourier serieddath. of
Computation19:297-301, 1965.

[3] F. Franchettiand M &schel. Short vector code generation for the discrete Eotrensform. IrProc. IEEE Int'l
Parallel and Distributed Processing Symposium (IPDRf8)ges 5867, 2003.

[4] F. Franchetti, Y. Voronenko, and MiBchel. FFT program generation for shared memory: SMP artiicore.
In Proc. Supercomputing (SC3006.

[5] Franz Franchetti, MarkusiBchel, Yevgen Voronenko, Srinivas Chellappa, ané& MsF. Moura. Discrete
Fourier transform on multicorelEEE Signal Processing Magazine, special issue on “Sigrmakc@ssing on
Platforms with Multiple Cores;’26(6):90-102, 2009.

[6] M. Frigo and S. G. Johnson. FFTW: An adaptive software igecture for the FFT. IrProc. IEEE Int'l
Conf. Acoustics, Speech, and Signal Processing (ICASSR)me 3, pages 1381-1384, 1998.

[7] M. Frigo and S. G. Johnson. The design and implementatidgfFTW3. Proceedings of the IEEE3(2):216—
231, 2005. special issue on “Program Generation, Optiimizaand Adaptation”.

[8] D. B. Harris, J. H. McClellan, D. S. K. Chan, and H. W. Schsier. Vector radix fast Fourier transform. In
Proc. International Conference on Acoustics, Speech, ambbProcessing. Conference Proceedings (ICASSP
'77), pages 548-551, Los Alamitos, 1977. IEEE Comput. Soc. Press

[9] M. T. Heidemann, D. H. Johnson, and C. S. Burrus. GausstanHistory of the Fast Fourier Transforéurchive
for History of Exact Science84:265—-277, 1985.

[10] D. G. Korn and J. J. Lambiotte, Jr. Computing the fastiutransform on a vector computéviathematics of
Computation33(7):977-992, 1979.

[11] A. Norton and A. J. Silberger. Parallelization and penfiance analysis of the Cooley-Tukey FFT algorithm for
shared-memory architecturdEEE Trans. Comput36(5):581-591, 1987.

[12] H. J. Nussbaumefast Fourier Transformation and Convolution Algorithn&pringer, 2nd edition, 1982.

[13] M. C. Pease. An adaptation of the fast Fourier transftomparallel processingJournal of the ACM15(2),
April 1968.

13

[14] W. H. Press, B. P. Flannery, Teukolsky S. A., and VeittgriV. T. Numerical Recipes in C: The Art of Scientific
Computing Cambridge University Press, 2nd edition, 1992.

[15] M. Pischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.idges, J. Xiong, F. Franchetti, A. @i,
Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRBade generation for DSP transforn®soceed-
ings of the IEEE93(2):232-275, 2005. special issue on “Program Generdfiptimization, and Adaptation”.

[16] Paul N. Schwarztrauber. Multiprocessor FFParallel Computing5:197-210, 1987.

[17] R. Tolimieri, M. An, and C. Lu.Algorithms for Discrete Fourier Transforms and ConvolatioSpringer, 2nd
edition, 1997.

[18] C. Van Loan.Computational Framework of the Fast Fourier Transfor81AM, 1992.

[19] Y. Voronenko, F. de Mesmay, and Mugchel. Computer generation of general size linear tramslfibraries. In
Proc. Code Generation and Optimization (CG@ages 102—-113, 2009.

[20] Yevgen Voronenko and MarkugiBchel. Algebraic signal processing theory: Cooley-Tuley algorithms for
real DFTs.IEEE Transactions on Signal Processjig (1), 2009.

14

