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DEFINITION

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT)
of an input vector. Efficient means that the FFT computes the DFT of ann-element vector inO(n logn)
operations in contrast to theO(n2) operations required for computing the DFT by definition. FFTs exist for
any vector lengthn and for real and higher-dimensional data. Parallel FFTs have been developed since the
advent of parallel computing.

DISCUSSION

Introduction

The discrete Fourier transform (DFT) is a ubiquitous tool in science and engineering including in digital sig-
nal processing, communication, and high-performance computing. Applications include spectral analysis,
image compression, interpolation, solving partial differential equations, and many other tasks.

Givenn real or complex inputsx0, . . . , xn−1, the DFT is defined as

yk =
∑

0≤ℓ<n

ωkℓ
n xℓ, 0 ≤ k < n, (1)

with ωn = exp(−2πi/n), i =
√
−1. Stacking thexℓ and yk into vectorsx = (x0, . . . , xn−1)

T and
y = (y0, . . . , yn−1)

T yields the equivalent form of a matrix-vector product:

y = DFTn x, DFTn = [ωkℓ
n ]0≤k,ℓ<n. (2)

Computing the DFT by its definition (2) requiresΘ(n2) many operations. The first fast Fourier transform
algorithm (FFT) by Cooley and Tukey in 1965 reduced the runtime toO(n log(n)) for two-powersn and
marked the advent of digital signal processing. (It was later discovered that this FFT had already been de-
rived and used by Gauss in the 19th century but was largely forgotten since then [9].) Since then, FFTs have
been the topic of many publications and a wealth of different algorithms exist. This includesO(n log(n))
algorithms for any input sizen, as well as numerous variants optimized for various computing platform and

1



computation requirements. The by far most commonly used DFT is for two-power input sizesn, partly
because these sizes permit the most efficient algorithms.

The first FFT explicitly optimized for parallelism was the Pease FFT published in1968. Since then
specialized FFT variants were developed with every new type of parallel computer. This includes FFTs for
data flow machines, vector computers, shared and distributed memory multiprocessors, streaming and SIMD
vector architectures, digital signal processing (DSP) processors, field-programmable gate arrays (FPGAs),
and graphics processing units (GPUs). Just like Pease’s FFT, these parallel FFTs are mainly for two-powers
n and are adaptations of the same fundamental algorithm to structurally match the target platform.

On contemporary sequential and parallel machines it has become very hard to obtain high-performance
DFT implementations. Beyond the choice of a suitable FFT, many other implementationissues have to be
addressed. Up to the 1990s there were many public FFT implementations and proprietary FFT libraries
available. Due to the code complexity inherent to fast implementations and the fast advances in processor
design, today only a few competitive open source and vendor FFT libraries are available in the parallel
computing space.

FFTs: Representation

Corresponding to the two different ways (1) and (2) of representing the DFT, FFTs are represented either
as sequences of summations or as factorizations of the transform matrixDFTn. The latter representation is
adopted in Van Loan’s seminal book [18] on FFTs and used in the following. To explain this representation
assume as example thatDFTn in (2) can be factored into four matrices

DFTn = M1M2M3M4. (3)

Then (2) can be computed in four steps as

t = M4x, u = M3t, v = M2u, y = M1v.

If the matricesMi are sufficiently sparse (have many zero entries) the operations count compared to a direct
computation is decreased and (3) is called an FFT. For example,DFT4 can be factorized as
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where omitted values are zero. This example also demonstrates why the matrix-vector multiplications in (3)
are not performed using a generic sparse linear algebra library, but, since theMi are known and fixed, by a
specialized program.

Conversely, every FFT can be written as in (3) (with varying numbers of factors). The matricesMi in
FFTs are not only sparse but also structured, as a glimpse on (4) illustrates. This structure can be efficiently
expressed using a formalism based on matrix algebra and also clearly expresses the parallelism inherent to
an FFT.

Matrix formalism and parallelism. Then × n identity matrix is denoted withIn, and thebutterfly
matrix is a DFT of size 2:

DFT2 =
[

1 1
1 −1

]

. (5)

TheKronecker productof matricesA andB is defined as

A⊗B = [ak,ℓB], for A = [ak,ℓ].
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(a) y = (I4 ⊗DFT2)x

xy

(b) y = (DFT2 ⊗I4)x

Figure 1: Dataflow (right to left) of a block parallel and its “dual” vector parallel construct (figure from [5]).

It replaces every entryak,ℓ of A by the matrixak,ℓB. Most important for FFTs are the cases whereA or B
is the identity matrix. As examples consider

I4 ⊗DFT2 =
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, DFT2⊗I4 =
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,

with the corresponding dataflows shown in Fig. 1. Note that the dataflows are from right to left to match
the order of computation in (3).I4 ⊗DFT2 clearly expresses block parallelism: four butterflies computing
on contiguous subvectors; whereasDFT2⊗I4 expresses vector parallelism: four butterflies operating on
interleaved subvectors which is the same as onevector butterfly operating onvectorsof length four as
emphasized in Fig. 1(b). More precisely, consider the code forDFT2 (i.e.,y = DFT2 x):

y[0] = x[0] + x[1];
y[1] = x[0] - x[1];

Then code forDFT2⊗I4 is obtained by replacing every scalar operation by a four-way vector operation:

y[0:3] = x[0:3] + x[4:7];
y[4:7] = x[0:3] - x[4:7];

Here,x[a:b] denotes (Matlab or FORTRAN style) the subvector ofx starting ata and ending atb.
These examples illustrate how the tensor product captures parallelism. To summarize:

block parallelism (n blocks): In ⊗A, (6)

vector parallelism (n-way): A⊗ In, (7)

whereA is any matrix.
Thestride permutationmatrixLmn

m permutes the elements of the input vector asin+ j 7→ jm+ i, 0 ≤
i < m, 0 ≤ j < n. If the vectorx is viewed as ann × m matrix, stored in row-major order, thenLmn

m

performs a transposition of this matrix. Further, ifP is a permutation (matrix), thenAP = P−1AP is the
conjugationof A with P .

Cooley-Tukey FFT. The fundamental algorithm at the core of the most important parallel FFTs derived
in the literature is the general-radix decimation-in-time Cooley-Tukey type FFT expressed as

DFTn = (DFTk ⊗Im)Tn
m(Ik ⊗DFTm)Ln

k , n = km. (8)

Here,k is called the radix andTn
m is a diagonal matrix containing thetwiddle factors. The algorithm factors

the DFT into four factors as in (4), which shows the special casen = 4 = 2× 2. Two of the four factors in
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DFT16  =

DFT4  I4  L4  

16
T4  

16
DFT4  I4  

(a) Matrix factorization

xy

(b) Data-flow graph

Figure 2: Cooley-Tukey FFT (8) for16 = 4× 4 as matrix factorization and as (complex) data-flow graph (from right
to left). Some lines are bold to emphasize the strided access(figure from [5]).

(8) contain smaller DFTs; hence the algorithm is divide-and-conquer andhas to be applied recursively. At
each step of the recursion the radix is a degree of freedom. For two-power sizesn = 2ℓ, (8) is sufficient to
recurse up ton = 2, which is computed by definition (5).

Fig. 2 shows the special case16 = 4 × 4 as matrix factorization and as corresponding dataflow graph
(again to be read from right to left). The smaller DFTs are represented asblocks with different shades of
gray.

A straightforward implementation of (8) suggests four steps corresponding to the four factors, where two
steps call smaller DFTs. However, to improve locality, the initial permutationLn

k is usually not performed
but interpreted as data access for the subsequent computation, and the twiddle diagonalTn

m is fused with
the subsequent DFTs. This strategy is chosen, for example, in the libraryFFTW 2.x and the code can be
sketched as follows

void dft(int n, complex *y, complex *x) {
int k = choose_factor(n);
// t1 = (I_k tensor DFT_m)L(n,k)*x
for(int i=0; i < k; ++i)

dft_iostride(m, k, 1, t1 + m*i, x + m*i);
// y = (DFT_k tensor I_m) diag(d(j))
for(int i=0; i < m; ++i)

dft_scaled(k, m, precomp_d[i], y + i, t1 + i);
}

// DFT variants needed
void dft_iostride(int n, int istride, int ostride, complex *y, complex *x);
void dft_scaled(int n, int stride, complex *d, complex *y, complex *x);

The DFT variants needed for the smaller DFTs are implemented similarly based on(8). There are many
additional issues in implementing (8) to run fast on a non-parallel platform. The focus here is on mapping
(8) to parallel platforms for two-power sizesn.

Parallel FFTs: Basic idea

The occurrence of tensor products in (8) shows that the algorithm has inherent block and vector parallelism
as explained in (6) and (7). However, depending on the platform and for efficient mapping, the algorithm
should exhibit one or both forms of parallelism throughout the computation to the extent possible. To
achieve this, (8) can be formally manipulated using well-known matrix identities shown in Table 1.

The table makes clear that there is a virtually unlimited set of possible variants of(8), which also explains
the large set of publications on FFTs. These variants hardly differ in operations count but in structure, which
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(BC)⊤ = C⊤B⊤

(A⊗B)⊤ = A⊤ ⊗B⊤

Imn = Im ⊗ In,

A⊗B = (A⊗ Im)(In ⊗B)

In ⊗ (BC) = (In ⊗B)(In ⊗ C)

(BC)⊗ In = (B ⊗ In)(C ⊗ In)

A⊗B = Lmn
n

(B ⊗A)Lmn
m

(

Lmn
m

)−1

= Lmn
n

Lkmn
n

= (Lkn
n

⊗ Im)(Ik ⊗ Lmn
n

)

Lkmn

km
= (Ik ⊗ Lmn

m
)(Lkn

k
⊗ Im)

Lkmn

k
= Lkmn

km
Lkmn

kn

Table 1: Formula identities to manipulate FFTs.A is n× n, andB andC arem×m. A⊤ is the transpose ofA.

is crucial for parallelization. The remainder of this article introduces the mostimportant parallel FFTs
derived in the literature. All these FFTs can be derived from (8) using Table 1. The presentation is divided
into iterative and recursive FFTs. Each FFT is visualized for sizen = 16 in a form similar to (1) (and again
from right to left) to emphasize block and vector parallelism. In these visualizations, the twiddle factors are
dropped since they do not affect the dataflow and hence pose no structural problem for parallelization.

Iterative FFTs

The historically first FFTs that were developed and adapted to parallel platforms are iterative FFTs. These
algorithms implement the DFT as a sequence of nested loops (usually three). The simplest areradix-r forms
(usuallyr = 2, 4, 8), which require an FFT size ofn = rℓ; more complicated mixed-radix radix variants
always exist. They all factorDFTn into a product ofℓ matrices, each of which consists of a tensor product
and twiddle factors. Iterative algorithms are obtained from (8) by recursive expansion, flattening the nested
parentheses, and other identities in Table 1.

The most important iterative FFTs are discussed next, starting with the standard version, which is not
optimized for parallelism but included for completeness. Note that the exact form of the twiddle factors
differs in these FFTs, even though they are denoted with the same symbol.

Cooley-Tukey iterative FFT. The radix-r iterative decimation-in-time FFT

DFTrℓ =

(

ℓ−1
∏

i=0

(

Iri ⊗DFTr ⊗Irℓ−i−1

)

Drℓ

i

)

Rrℓ

r , (9)

is the prototypical FFT algorithm and shown in Fig. 3.Rrℓ
r is the radix-r digit reversal permutation and the

diagonalDrℓ
i contains the twiddle factors in theith stage. The radix-2 version is implemented by Numerical

Recipes using a triple loop corresponding to the two tensor products (innertwo loops) and the product (outer
loop).

Formal transposition of (9) yields theiterative decimation-in-frequency FFT:

DFTrℓ = Rrℓ

r

ℓ−1
∏

i=0

Drℓ

i

(

Irℓ−i−1 ⊗DFTr ⊗Iri
)

. (10)

Both (9) and (10) contain the bit reversal permutationRrℓ
r . The parallel and vector structure of the occurring

butterflies depends on the stage. Thus, even though every stage is data parallel, the algorithm as is is neither
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Figure 3: Iterative FFT (9) forn = 24 andr = 2.
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Figure 4: Pease FFT in (11) forn = 24 andr = 2.

well suited for machines that require block parallelism nor vector parallelism.For this reason very few
parallel triple-loop implementations exist and compiler parallelization and vectorization tend not to succeed
in producing any speed-up when targeting the triple-loop algorithm.

Pease FFT. A variant of (9) is thePeaseFFT

DFTrℓ =

(

ℓ−1
∏

i=0

Lrℓ

r

(

Irℓ−1 ⊗DFTr

)

Drℓ

i

)

Rrℓ

r , (11)

shown in Fig. 4 forr = 2. It has constant geometry, i.e., the control flow is the same in each stage stage,
and maximizes block parallelism by reducing the block sizes tor on which single butterflies are computed.
However, the Pease FFT also requires the digit reversal permutation. Each stage of the Pease algorithm
consists of the twiddle diagonal and a parallel butterfly block, followed by the same data exchange across
parallel blocks specified through a stride permutation. The Pease FFT wasoriginally developed for parallel
computers, and its regular structure makes it a good choice for field-programmable gate arrays (FPGAs) or
ASICs. Formal transposition of (11) yields a variant with the bit-reversalin the end.

6



Stage 3 Stage 2 Stage 1 Stage 0Bit reversal
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Figure 5: Korn-Lambiotte FFT in (12) forn = 24 andr = 2. Vbutterfly = vector butterfly.

Korn-Lambiotte FFT. TheKorn-Lambiotte FFTis given by

DFTrℓ = Rrℓ

r

(

ℓ−1
∏

i=0

Lrℓ

rℓ−1D
rℓ

i

(

DFTr ⊗Irℓ−1

)

)

, (12)

and is the algorithm that is dual to the Pease FFT in the sense used in Fig. 1. Namely, it has also constant
geometry, but maximizes vector parallelism as shown in Fig. 5 forr = 2. Each stage contains one vector
butterfly operating on vectors of lengthn/r, and a twiddle diagonal. As last step it performs the digit
reversal permutation. The Korn-Lambiotte FFT was developed for early vector computers. It is derived
from the Pease algorithm through formal transposition followed by the translation of the tensor product
from a parallel into a vector form.

Stockham FFT. TheStockham FFT

DFTrℓ =
ℓ−1
∏

i=0

(

DFTr ⊗Irℓ−1

)

Drℓ

i

(

Lrℓ−i

r ⊗ Iri
)

, (13)

is self-sorting, i.e., it does not have a digit reversal permutation. It is shown Fig. 6 forr = 2. Like the Korn-
Lambiotte FFT, it exhibits maximal vector parallelism but the permutations change across stages. Each of
these permutations is a vector permutation, but the vector length increases bya factor ofr in each stage
(starting with 1). Thus, for most stages a sufficiently long vector length is achieved. The Stockham FFT was
originally developed for vector computers. Its structure is also suitable forgraphics processors (GPUs), and
indeed most current GPU FFT libraries are based on the Stockham FFT. The formal transposition of (13) is
also called Stockham FFT.

Recursive FFT Algorithms

The second class of Cooley-Tukey-based FFTs are recursive algorithms, which reduce a DFT of sizen =
km into k DFTs of sizem andm DFTs of sizek. The advantage of recursive FFTs is better locality and
hence better performance on computers with deep memory hierarchies. They also can be used as kernels
for iterative algorithms. For parallelism, recursive algorithms are derived, for example, to maximize the
block size for multicore platforms, or to obtain vector parallelism for a fixed vector length for platforms
with SIMD vector extensions. The most important recursive algorithms are discussed next.
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Figure 6: Stockham FFT in (13) forn = 24 andr = 2. Vbutterfly = vector butterfly, VShuffle = vector shuffle.

Accumulated 

shuffles

Recursive FFT
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16

8

(

I2 ⊗
(

(DFT2 ⊗I4)T
8

4

(

I2 ⊗
(

(DFT2 ⊗I2)T
4

2 (I2 ⊗DFT2)L
4

2

))

L8

2

))

L16

2

Figure 7: Recursive radix-2 decimation-in-time FFT forn = 24.

Recursive Cooley-Tukey FFT. The recursive, general-radix decimation-in-time Cooley-Tukey FFT was
shown before in (8). Typically,k is chosen to be small, with values up to 64. If (8) is applied ton = rℓ

recursively withk = r the algorithm is called radix-r decimation-in time FFT. As explained before, the
initial permutation is usually not performed but propagated as data access into the smaller DFTs. For radix-
2 the algorithm is shown in Fig. 7. Note that the dataflow is equal to Fig. 3, but the order of computation is
different as emphasized by the shading.

Formal transposition of (8) yields therecursive decimation-in-frequency FFT

DFTn = Ln
m(Ik ⊗DFTm)Tn

m(DFTk ⊗Im), n = km. (14)

Recursive application of (8) and (14) eventually leads to prime sizesk andm, which are handled by a special
prime-size FFT. For two-powersn the butterfly matrixDFT2 terminates the recursion.

The implementation of (8) and (14) is more involved than the implementation of iterative algorithms, in
particular in the mixed-radix case. The divide-and-conquer nature of (8) and (14) makes them good choices
for machines with memory hierarchies, as at some recursion level the working set will be small enough to
fit into a certain cache level, a property sometimes calledcache oblivious. Both (8) and (14) contain both
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Figure 8: Four-step FFT forn = 24 andk = m =
√
n = 4.

vector and parallel blocks and stride permutations. Thus, despite their inherent data parallelism, they are not
ideal for either parallel or vector implementations. The following variants address this problem.

Four-step FFT. Thefour-step FFTis given by

DFTn = (DFTk ⊗Im)Tn
mLn

k(DFTm⊗Ik), n = km, (15)

and shown in Fig. 8. It is built from two stages of vector FFTs, the twiddle diagonal and a transposition.
Typically, k,m ≈ √

n is chosen (also called “square root decomposition”). Then, (15) results in the longest
possible vector operations except for the stride permutation in the middle.

The Four Step FFT was originally developed for vector computers and the stride permutation (or trans-
position) was originally implemented explicitly while the smaller FFTs were expandedwith some other
FFT—typically iterative. The transposition can be implemented efficiently using blocking techniques. (15)
can be a good choice on parallel machines that execute operations on longvectors well and on which the
overhead of a transposition is not too high. Examples includes vector computers and machines with stream-
ing memory access like GPUs.

Six-step FFT. Thesix-step FFTis given by

DFTn = Ln
k(Im ⊗DFTk)L

n
mTn

m(Ik ⊗DFTm)Ln
k , n = km, (16)

and shown in Fig. 9. It is built from two stages of parallel butterfly blocks,the twiddle diagonal, and
three global transpositions (all-to-all data exchanges). (16) was originally developed for distributed mem-
ory machines and out-of-core computation. Typically,k,m ≈ √

n is chosen to maximize parallelism.
The transposition was originally implemented explicitly as all-to-all communication whilethe smaller FFTs
were expanded with some other FFT algorithm—typically iterative. As in (15), the required matrix trans-
position can be blocked for more efficient data movement. (16) can be a good choice on parallel machines
that have multiple memory spaces and require explicit data movement, like messagepassing, offloading to
accelerators (GPUs and FPGAs), and out-of-core computation.

Multicore FFT. Themulticore FFTfor a platform withp cores and cache block sizeµ is given by

DFTn =
(

Ip ⊗ (DFTk ⊗Im/p)
)

(

(Lkp
p ⊗Im/pµ)⊗Iµ

)

Tn
m

×
(

Ip ⊗ (Ik/p ⊗DFTm)L
n/p
k/p

)(

(Lpm
p ⊗ Ik/pµ)⊗ Iµ

)

, n = km, (17)
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Figure 9: Six-step FFT forn = 24 andk = m =
√
n = 4.
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Figure 10: Multicore FFT forn = 24, k = m = 4, p = 2 cores, and cache block sizeµ = 2.

and is a version of (8) that is optimized for homogeneous multicore CPUs with memory hierarchies. An
example is shown in Fig. 10. (17) follows the recursive FFT (8) closely but ensures that all data exchanges
between cores and all memory accesses are performed with cache block granularity. For a multicore with
cache block sizeµ andp cores, (17) is built solely from permutations that permute entire cache lines and
p-way parallel compute blocks. This property allows for parallelization of small problem sizes across a
moderate number of cores. Implementation of (17) on a cache-based system relies on the cache coherency
protocol to transmit cache lines of lengthµ between cores and requires a global barrier. Implementation on
a scratchpad based system requires explicit sending and receiving ofthe data packets, and depending on the
communication interface additional synchronization may be required.

The smaller DFTs in (17) can be expanded, for example, with the short vector FFT (discussed next) to
optimize for vector extensions.

SIMD short vector FFT. For CPUs with SIMDν-way vector extensions like SSE and AltiVec and a
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Figure 11: Short vector FFT in (18) forn = 24, k = m = 4, and (complex) vector lengthν = 2.

memory hierarchy, theshort vector FFTis defined as

DFTn =
(

(DFTk ⊗Im/ν)⊗ Iν
)

Tn
m

(

Ik/ν ⊗ (Lm
ν ⊗ Iν)

× (Im/ν ⊗ Lν2

ν )(DFTm⊗Iν)
)(

L
n/ν
k/ν ⊗ Iν

)

, n = km, (18)

and can be implemented using solely vector arithmetic, aligned vector memory access, and a small number
of vector shuffle operations. An example is shown in Fig. 11. All compute operations in (18) have complex
ν-way vector parallelism. The only operation that is notν-way vectorized is the stride permutationsLν2

ν ,
which can be implemented efficiently using in-register shuffle instructions. (18) requires the support or
implementation of complex vector arithmetic and packsν complex elements into a machine vector register
of width 2ν. A variant that vectorizes the real rather then the complex dataflow exists.

Vector recursion. Thevector recursionperforms a locality optimization for deep memory hierarchies
for the first stage(Ik ⊗DFTm)Ln

k of (8). Namely, in this stageDFTm is further expanded using again (8)
with m = m1m2 and the resulting expression is manipulated to yield

(Ik ⊗DFTm)Ln
k =

(

Ik ⊗ (DFTm1
⊗Im2

)Tm
m2

)

×
(

Lkm1

k ⊗ Im2

)

(

Im1
⊗
(

Ik ⊗DFTm2

)

Lkm2

k

)

(

Lm
m1

⊗ Ik
)

. (19)

While the recursive FFT (8) ensures that the working set will eventually fit into any level of cache, large
two-power FFTs induce large 2-power strides. For caches with lower associativity these strides result in a
high number of conflict misses, which may impose a severe performance penalty. For large enough two-
power sizes, in the first stage of (8) every single load will result in a cache miss. The vector recursion
alleviates this problem by replacing the stride permutation in (8) by stride permutations of vectors, at the
expense of an extra pass through the working set. Since (19) matches

(

Ik ⊗ DFTn

)

Lkn
k , it is recursively

applicable and will eventually produce child problems that fit into any cache level. The vector recursion
produces algorithms that are a mix of iterative and recursive as shown in Fig. 12.

Other FFT topics

So far the discussion has focused on one-dimensional complex two-power size FFTs. Some extensions are
mentioned next.
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(DFT2 ⊗I8)T
16
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8

4

)(

L4
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)
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(
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(

(DFT2 ⊗I2)T
4
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)

)

R8

2

)

(

L8

2 ⊗ I2
)

Figure 12: Vector recursive FFT forn = 24. The vector recursion is applied once and yields vector shuffles, two
recursive FFTs, and two iterative vector stages.

General size recursive FFT algorithms. DFT algorithms fundamentally different from (8) include
prime-factor (n is a product of coprime factors), Rader (n is prime), and Bluestein or Winograd (anyn). In
practice these are mostly used for small sizes< 32, which then serve as building blocks for large composite
sizes via (8). The exception is Bluestein’s algorithm that is often used to compute large sizes with large
prime factors or large prime numbers.

DFT variants and other FFTs. In practice, several variants of the DFT in (2) are needed including
forward/inverse, interleaved/split complex format, for complex/real inputdata, in-place/out-of-place, and
others. Fortunately, most of these variants are close to the standard DFT in(2), so fast code for the latter can
be adapted. An exception is the DFT for real input data, which has its own class of FFTs.

Multidimensional FFT algorithms. The Kronecker product naturally arises in 2D and 3D DFTs, which
respectively can be written as

DFTm×n = DFTm⊗DFTn, (20)

DFTk×m×n = DFTk ⊗DFTm⊗DFTn . (21)

For a 2D DFT, applying identities from Table 1 to (20) yields the row-column algorithm

DFTm×n = (DFTm⊗In)(Im ⊗DFTn). (22)

The 2D vector-radix algorithm can also be derived with identities from Table1 from (20):

DFTmn×rs =
(

DFTm×r ⊗Ins
)Im⊗Lrn

r ⊗Is(Tmn
n ⊗ T rs

s

)

×
(

Imr ⊗DFTn×s

)Im⊗Lrn
r ⊗Is(Lmn

m ⊗ Lrs
r

)

. (23)

Higher-dimensional versions are derived similarly, and the associativity of ⊗ gives rise to more variants.

RELATED ENTRIES

FFTW
FFTE
SPIRAL
ATLAS
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BIBLIOGRAPHIC NOTES AND FURTHER READING

The original Cooley-Tukey FFT algorithm can be found in [2]. The Pease FFT in [13] is the first FFT
derived and represented using the Kronecker product formalism. Theother parallel FFTs were derived in
[10] (Korn-Lambiotte FFT), [16] (Stockham FFT), [11] (Four-Step FFT), [1] (Six-Step FFT). The vector
radix FFT algorithm can be found in [8], the vector recursion in [7], the short vector FFT in [3], and the
multicore FFT in [4]. A good overview on FFTs including the classical parallel variants is given in Van
Loan’s book [18] and the book by Tolimieri, An and Lu [17]; both are based on the formalism used here.
Also excellent is Nussbaumer FFT book [12]. An overview on real FFTscan be found in [20].

At the point of writing the most important fast DFT libraries are FFTW by Frigoand Johnson [6, 7],
Intel’s MKL and IPP, and IBM’s ESSL and PESSL. FFTE is currently used in the HPC Challenge asGlobal
FFT benchmark reference implementation. Most CPU, GPU, and FPGA vendorsmaintain DFT libraries.
Some historic DFT libraries like FFTPACK are still widely used. Numerical Recipes [14] provides C code
for an iterative radix-2 FFT implementation. BenchFFT provides up-to-dateFFT benchmarks of about 60
single-node DFT libraries. The Spiral system is capable of generating parallel DFT libraries directly from
the tensor product based algorithm description [19, 15].
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[4] F. Franchetti, Y. Voronenko, and M. Püschel. FFT program generation for shared memory: SMP and multicore.
In Proc. Supercomputing (SC), 2006.

[5] Franz Franchetti, Markus P̈uschel, Yevgen Voronenko, Srinivas Chellappa, and José M. F. Moura. Discrete
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